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Lecture 10

Hidden Markov Model

A Hidden Markov Model HMM is defines as:

decouple states from sym bof’ﬁ

+ An alphabet of symbols =

I+ Asetof hidden states - -
« [emission probabilities]

« [transitional probabilities] : FOLe‘?h St‘i‘tz K, aTdksymbol b

For each palr of states iand j, | [er:((JV\)/ ;vep(:l(‘s; v;riT;l)_Ie )nfor states

a transition probability a, : :

P v 3 : and variable x for symbols]

¢ Zgy=1

*  Z;€(b) = 1 for each state k

Markov property: (TG, = j | Xo. Xy T Ty, T = 1) =
p(m, =j|mM,=0) m<n
if m=n-1, then this is ay
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HMM for CpG islands




Questions with HMMs

< Evaluation: given x, what is the probability p(x)
that it was produced by the model?

« Decoding: given x, what is the most probable
path that produces x in the model?

e Learning: given x, what are the parameters
(transitional probabilities and emission
probabilities) of the model that maximize

p(Xx).

Viterbi decoding algorithm

« |nitialization
Vo(0) =1, v, (0) =0 fork >0

l
]

¢ Main iteration
fori=1...n
Vi(i) = e(x).max, (vi(i — 1).a,)
ptr,(i) = argmax, (v (i — 1)ay)

UJ
Time = O(k?n)
¢ Termination Space = O(kn)
p(x, 1) = max, (vi(n)ay)

Computing p(x)

Before, p(X) = a's,x1|-|i=2...n Ay

Now, p(x)=2,p(x,)
» Enumerating all Ttis exponential!

» Use Viterbi, same as before,
but change max to 2




Forward evaluation algorithm
o Let fi(i) = p(X;...x, ;=1)

e Then,
fi(i) = el(xi)zkfk(i:”l)akl

All possible
stiilles N
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Derivation

i@
= T i PO X T T, TR

= T i1 POG Tl Xy X, TG TE)

= 2 s POG TEE X Xy T Ty ) P (K Xy TG TE )
= 2 i POG T T50)P(Xy - X T TE )

= T ik POG T Ty = K).P(Xy - Xy, TG T, T = K)
= 2o ok ©00AGP(X - Xy, T Th,, Ty = K)

= 5 g iz €09)2-P(Xy - Xig, T T, TEy = K)

= 2 T rig PG Xy T T, Thy = K) €(X)ay

=2 fi(i-1)e (5)ay = &%) 2 fili-1)ay

Forward evaluation algorithm

* |nitialization
f,(0) =1, f(0) = 0 for k > 0

* Main iteration
fori=1...n

fi()) = e(x).Z (f(i — 1).a)

e Termination
p(x) = Z f(nay,




Problem of small numbers

* In Viterbi and Forward algorithm we
multiply probabilities = numbers will soon
be very small and we loose precision.

» Use log space > addition instead of
multiplication.

Log space Viterbi
v((i) = e(x).max, (v, (i — 1).a,)
Let V(i) = log v(i)
V(i) = log [e(x;)-max (v, (i — 1).ay)]
=log e(x) + log [max, (v (i — 1).a,)]

= log e,(x) + max log [(v,(i — 1).a,)]
= log e/(x) + max, (V\(i— 1) +log &)

Log space Forward
fi(i) = e/(x).Z (f(i — 1).a,)
Let F(i) = log f(i)
F() = log [e,(x).Zy (fi(i — 1).a)]
= log e/(x;) + log Z, (fy(i — 1).a)
# log e,(x) + Z; log [(fi(i — 1).a,)]

= log e,(x) + log %, e(Fki~1) + log ak)




Back to the most probable path
¢ The Viterbi algorithm finds it!

« The most probable path might not be the most
appropriate basis for judgment.

« We might want, for instance, the most probable
state for an observation Xx;.

« More generally, we are interested in
p(m =k | x)
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Computing p(1t= K | X)
* p(=k|X) = p(x, = K)/p(x)

* | know how to compute p(x): forward alg.

* p(x, T=K)
= P(Xq.-- X, TE= K).P(Kipq---Xp | Xq-0-%; TE=K)
= P(Xy-- X, 6= K).p(Xiyq--- X, | TG=K)
= £,(0).b ()

Backward evaluation algorithm

* |nitialization

b, (n) =a,,for all k -t
» Main iteration
fori=n-1...1
by (i) = 2, aye (X )by(i+1) &[]
. . Time = O(k?n)
e Termination Space = O(kn)

P(X) = Z;ag€(X)by(1)
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Learning (training the HMM)

« Let O be the parameters of the HMM (transition
probabilities and emission probabilities, the a’s
and e’s)

« Given independent sequences x, ..., X", we
would like to find 8 that will maximize:

log p(x*...x"| 6) = . , log p(x/| 6)

This is called the maximum likelihood
parameters.

State sequence is known

« Assume the path for each xi is known

— For instance, we have sequences in which CpG islands are
already labeled

« Paths are known, let
— A, = number of transitions from k to |
— Ey(b) = number of times b emitted in state k

* The maximum likelihood parameters are given by:

= ay= Ayl LA
- e(b) = E(b) / Z,E,(b)
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Maximum likelihood from counts

« Assume we have a sequence of independent
observations x; ...x, and that we count n,
occurrences of outcome i, i=1...k.

« Let 6, = probability of i.

e Then 6M- = {B;=n/n, i=1...k} is the maximum
likelihood solution for 6.

« Consider any other 6. We want to show that
p(x | 6M5) > p(x | 6)




Proof

p(|€™) o [1.67)"
px1e) 0[]
ML

= Z n |ogH'7
i1 gl
HML
=nY.,g" log~ >0

log

The last summation is the relative entropy of
ML and 6 which is always positive and 0 iff
ML = @ (from information theory)

‘Saad Mneimnen

Some problems

« Maximum likelihood are vulnerable to overfitting if insufficient data.

« For instance, if a state k was never used in the set of training
sequences, then
— ay=0foralll
— e(b)=0forallb

« To avoid such problem, start with pseudocounts of r,, for A,; and r,(b)
for E,(b).

« Large pseudocount indicates strong prior belief about the
probabilities (will require more data to modify)

« Small pseudocount just to avoid zero probability
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Example

Dishonest Casino HMM

for = ToL =g =T =1, [avoid zero probability]

fe, =M e =ree =1y =1; [avoid zero probability]
re(1) =rg(2) = ... =re(6) =20 ([strong belief that fair is fair]

n@)=r()=..=r(6)=5 [wait and see for loaded]
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New species comes in...

* New species with
different distribution of
CpG islands.

* We do not have labeled
genomic sequences for
the new species.

¢ Need to find maximum
likelihood 8 of HMM
without knowing the
paths!
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Baum—-Welsh algorithm

start at iteration O with some 6, call it 6°
LO € log p(xt...x" | 89)
i€o0

repeat
i€i+l

A € E[A, | xL..xn, 8] (expected value)
E (b) € E [E,(b) | x:...xn, 8]  (expected value)

calculate 6' using maximum likelihood estimators
from counts A/ and E,(b)' as before.

L' € log p(xt...x" | 6) (new likelihood)

until L'— L < threshold
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What is the guarantee?
» Baum—Welsh algorithm is a special case

of a general algorithm known as
Expectation Maximization (EM)

« EM guarantees that p(X | 6*1) = p(X | 6Y)

« It will therefore converge to a local
maximum (not necessarily the maximum)
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We need to...

Compute:

—E[Ag | xt..x", 6]

—E[E(b) | xL...x", ]

E [Ag | Xt...x", 6]

By linearity of expectation:
E[Ag | xt..xn, 8] =Z E[AJ | X, 6]

By linearity of expectation, again:

E[AJ| X, 8] =ZE[# of k>l at x;/| x|, 6]
=Zpk>latxi|x, 6)

p(k>1at xj| X, 8) = p(rg = k, T4, = 1| X, 6)

P =k, T, =] X, 8) = p(ry =k, T4, =1, | 8) / p(x/| 6)
= fJ()ae (. )bi(+1) / p(d| 6)

We get:

E[A, [, 6] =zjmzi ) (Dagg (X )b G +D)

S N0 0

E[E, (b) | X-..X', 6] =ZJW
ilx' =b




Viterbi training
start at iteration O with some 6, call it 8°
i€o0

repeat
i<i+l

A, € number of transitions k->| on the most probable paths é*, ..., T*
E,(b)' € number of times k emits b on the most probable paths T¢*, ..., T¥*

calculate ' using maximum likelihood estimators
from counts A, and E,(b)' as before.

until none of the optimal paths change
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What is the guarantee

« It will converge

It will not necessarily maximize the true likelihood
P(Xy...x"| 8) , but p(x;..x" | 8, T, ..., T¥%)

« Usually performs less well than Baum-Welsh

« Practical, don't have to perform Forward and Backward
algorithms, only Viterbi!

* Makes sense if we are using only Viterbi decoding
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