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Hidden Markov Model

• A set of hidden states

• [transitional probabilities]
For each pair of states i and j, 
a transition probability aij.

• Σjaij = 1

• An alphabet of symbols Σ

• [emission probabilities]
For each state k, and symbol b
ek(b) = p(xi = b | πi = k)
[now we use variable π for states 
and variable x for symbols]

• Σb∈Σ ek(b) = 1 for each state k

Markov property: p(πn = j | x0…xm, π0…πm-1, πm = i) = 
p(πn = j | πm = i) m < n
if m = n – 1, then this is aij

A Hidden Markov Model HMM is defines as:

decouple states from symbols
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HMM for CpG islands
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Questions with HMMs

• Evaluation: given x, what is the probability p(x) 
that it was produced by the model?

• Decoding: given x, what is the most probable 
path that produces x in the model?

• Learning: given x, what are the parameters 
(transitional probabilities and emission 
probabilities) of the model that maximize        
p(x).
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Viterbi decoding algorithm

• Initialization
v0(0) =1, vk(0) = 0 for k > 0

• Main iteration
for i = 1…n

vl(i) = el(xi).maxk (vk(i – 1).akl)
ptrl(i) = argmaxk(vk(i – 1)akl)

• Termination
p(x,π*) = maxk(vk(n)ak0)

Time = O(k2n)
Space = O(kn)
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Computing p(x) 

• Before, p(x) = asx1Πi=2…n axi-1 xi

• Now, p(x)=Σπ p(x,π)

• Enumerating all π is exponential!

• Use Viterbi, same as before, 

but change max to ΣΣΣΣ
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Forward evaluation algorithm

• Let fl(i) = p(x1…xi, πi = l)

• Then,

fl(i) = el(xi)Σkfk(i – 1)akl

l

xi with prob. el(xi)k
All possible 
states akl

πi = l

fk(i-1)
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Derivation
fl(i)

= Σπ1..πi-1 p(x1…xi, π1…πi-1, πi=l)

= Σπ1..πi-1 p(xi, πi=l, x1…xi-1, π1…πi-1)

= Σπ1..πi-1 p(xi, πi=l | x1…xi-1, π1…πi-1).p(x1…xi-1, π1…πi-1)

= Σπ1..πi-1 p(xi, πi=l | πi-1).p(x1…xi-1, π1…πi-1)

= Σπ1..πi-2,k p(xi, πi=l | πi-1 = k).p(x1…xi-1, π1…πi-2, πi-1 = k)

= Σπ1..πi-2,k el(xi)akl.p(x1…xi-1, π1…πi-2, πi-1 = k)

= Σk Σπ1..πi-2 el(xi)akl.p(x1…xi-1, π1…πi-2, πi-1 = k)

= Σk Σπ1..πi-2 p(x1…xi-1, π1…πi-2, πi-1 = k) el(xi)akl

= Σk fk(i-1)el(xi)akl = el(xi) Σk fk(i-1)akl

Saad Mneimneh

Forward evaluation algorithm

• Initialization
f0(0) =1, fk(0) = 0 for k > 0

• Main iteration
for i = 1…n
fl(i) = el(xi).Σk (fk(i – 1).akl)

• Termination
p(x) = Σk fk(n)ak0
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Problem of small numbers

• In Viterbi and Forward algorithm we 
multiply probabilities � numbers will soon 
be very small and we loose precision.

• Use log space � addition instead of 
multiplication.
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Log space Viterbi

vl(i) = el(xi).maxk (vk(i – 1).akl)

Let Vl(i) = log vl(i) 

Vl(i) = log [el(xi).maxk (vk(i – 1).akl)]
= log el(xi) + log [maxk (vk(i – 1).akl)]
= log el(xi) + maxk log [(vk(i – 1).akl)]
= log el(xi) + maxk (Vk(i – 1) + log akl)
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Log space Forward

fl(i) = el(xi).Σk (fk(i – 1).akl)

Let Fl(i) = log fl(i) 

Fl(i) = log [el(xi).Σk (fk(i – 1).akl)]
= log el(xi) + log Σk (fk(i – 1).akl)
� log el(xi) + Σk log [(fk(i – 1).akl)]

= log el(xi) + log Σke(Fk(i – 1) + log akl)
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Back to the most probable path

• The Viterbi algorithm finds it!

• The most probable path might not be the most 
appropriate basis for judgment.

• We might want, for instance, the most probable 
state for an observation xi.

• More generally, we are interested in                
p(πi = k | x)
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Computing p(πi = k | x)

• p(πi = k | x) = p(x, πi = k)/p(x)

• I know how to compute p(x): forward alg.

• p(x, πi = k) 
= p(x1…xi, πi = k).p(xi+1…xn | x1…xi, πi = k)
= p(x1…xi, πi = k).p(xi+1…xn | πi = k)
= fk(i).bk(i)
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Backward evaluation algorithm

• Initialization
bk(n) =ak0 for all k

• Main iteration
for i = n – 1…1
bk(i) = Σl aklel(xi+1)bl(i+1)

• Termination
p(x) = Σl a0lel(x1)bl(1)

Time = O(k2n)
Space = O(kn)
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Learning (training the HMM)

• Let θ be the parameters of the HMM (transition 
probabilities and emission probabilities, the a’s
and e’s)

• Given independent sequences x1, …, xn, we 
would like to find θ that will maximize:

log p(x1…xn | θ) = Σj=1..n log p(xj | θ)

This is called the maximum likelihood 
parameters. 
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State sequence is known

• Assume the path for each xj is known
– For instance, we have sequences in which CpG islands are 

already labeled

• Paths are known, let 
– Akl = number of transitions from k to l
– Ek(b) = number of times b emitted in state k

• The maximum likelihood parameters are given by:
– akl = Akl / Σl’Akl’

– ek(b) = Ek(b) / Σb’Ek(b’)
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Maximum likelihood from counts

• Assume we have a sequence of independent 
observations x1…xn and that we count ni
occurrences of outcome i, i=1…k.

• Let θi = probability of i.

• Then θML = {θi=ni/n, i=1…k} is the maximum 
likelihood solution for θ.

• Consider any other θ. We want to show that 
p(x | θML) > p(x | θ) 
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Proof

∏
∏=

i

n
i

i

nML
i

ML

i

i

xp

xp

θ
θ

θ
θ )(

log
)|(

)|(
log

�=
i

i

ML
i

in
θ

θ
log

0log >= �i
i

ML
iML

in
θ

θθ

The last summation is the relative entropy of 
θML and θ which is always positive and 0 iff
θML = θ (from information theory)
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Some problems
• Maximum likelihood are vulnerable to overfitting if insufficient data.

• For instance, if a state k was never used in the set of training 
sequences, then
– akl = 0 for all l
– ek(b) = 0 for all b

• To avoid such problem, start with pseudocounts of rkl for Akl and rk(b) 
for Ek(b).

• Large pseudocount indicates strong prior belief about the 
probabilities (will require more data to modify)

• Small pseudocount just to avoid zero probability
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Example

Dishonest Casino HMM

r0F = r0L = rF0 = rL0 = 1; [avoid zero probability]

rFL = rLF = rFF = rLL = 1; [avoid zero probability]

rF(1) = rF(2) = … = rF(6) = 20    [strong belief that fair is fair]

rL(1) = rL(2) = … = rL(6) = 5      [wait and see for loaded]
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New species comes in…
• New species with 

different distribution of 
CpG islands.

• We do not have labeled 
genomic sequences for 
the new species.

• Need to find maximum 
likelihood θ of HMM 
without knowing the 
paths!
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Baum–Welsh algorithm
start at iteration 0 with some θ, call it θ0

L0 � log p(x1…xn | θ0) 
i � 0

repeat
i � i + 1 

Akl
i � E [Akl | x1…xn, θi-1] (expected value)

Ek(b)i � E [Ek(b) | x1…xn, θi-1] (expected value)

calculate θi using maximum likelihood estimators 
from counts Akl

i and Ek(b)i as before.

Li � log p(x1…xn | θi) (new likelihood)

until Li – Li-1 < threshold 
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What is the guarantee?

• Baum–Welsh algorithm is a special case 
of a general algorithm known as 
Expectation Maximization (EM)

• EM guarantees that p(X | θi+1) ≥ p(X | θi)

• It will therefore converge to a local 
maximum (not necessarily the maximum)
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We need to…

Compute:

– E [Akl | x1…xn, θ] 

– E [Ek(b) | x1…xn, θ] 
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E [Akl | x1…xn, θ]

By linearity of expectation:
E [Akl | x1…xn, θ] = Σj E [Akl

j | xj, θ]

By linearity of expectation, again:
E [Akl

j | xj, θ] = Σi E[# of k�l at xi 
j | xj, θ]

= Σi p(k�l at xi
j | xj, θ)

p(k�l at xi
j | xj, θ) = p(πi = k, πi+1 = l | xj, θ)

p(πi = k, πi+1 = l | xj, θ) = p(πi = k, πi+1 = l, xj | θ) / p(xj | θ) 
= fkj(i)aklel(xi+1)bl

j(i+1) / p(xj | θ)
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We get:
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Viterbi training
start at iteration 0 with some θ, call it θ0

i � 0

repeat
i � i + 1 

Akl
i � number of transitions k�l on the most probable paths π1*, …, πj*

Ek(b)i � number of times k emits b on the most probable paths π1*, …, πj*

calculate θi using maximum likelihood estimators 
from counts Akl

i and Ek(b)i as before.

until none of the optimal paths change 
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What is the guarantee

• It will converge

• It will not necessarily maximize the true likelihood 
p(x1…xn | θ) , but p(x1…xn | θ, π1*, …, πj*)

• Usually performs less well than Baum–Welsh

• Practical, don’t have to perform Forward and Backward 
algorithms, only Viterbi! 

• Makes sense if we are using only Viterbi decoding


