
Computational Biology
Lecture 11: Pairwise alignment using HMMs

Saad Mneimneh

We looked at various alignment algorithms with different scoring schemes. We argued that the score of an alignment
is related to the relative likelihood that the two sequences are related compared to being unreleated, and we used the
log-odds ratio to express this relative likelihood while maintaining an additive scoring scheme.

Therefore, maximizing the score of an alignment was in some sense equivalent to maximizing the log-odds ratio, with
the exception that gaps are scored separately and are not related to the log-odds ratio. Recall that we have considered
only ungapped alignments in deriving the scores that relate to the log-odds ratio, and assumed a separate model for
scoring gaps; for instance, an affine gap penalty function.

Now we will unify both models into a single probabilistic model and see how the score of a gapped alignment of the
Needleman-Wunsch algorithm can be viewed as a maximum log-odds ratio obtained by a Viterbi algorithm for an HMM
that generates two sequences simultaneously.

Needleman-Wunsch as a Finite State Machine

Recall the Needleman-Wunsch algorithm with an affine gap penalty function.

A(i, j) = s(i, j) + max





A(i− 1, j − 1)
B(i− 1, j − 1)
C(i− 1, j − 1)

B(i, j) = max
{

A(i− 1, j)− e
B(i− 1, j)− d

C(i, j) = max
{

A(i, j − 1)− e
C(i, j − 1)− d

Any alignment generated by this algorithm can be represented as a path starting in state A in the following finite
state machine:

A
(+1,+1)

C
(+0,+1)

B
(+1,+0)

s(xi,yj)

s(xi,yj)

s(xi,yj)

– d

– d

– e

– e

A
(+1,+1)

C
(+0,+1)

B
(+1,+0)

s(xi,yj)

s(xi,yj)

s(xi,yj)

– d

– d

– e

– e

Figure 1: Needleman-Wunsch as FSM

In each state there is an indication to which character is emitted. For instance, in state A, two aligned characters
from x and y respectively are emitted. In state B only one character from x aligned with a gap is emitted. In state C
only one character from y aligned with a gap is emitted.

The score of the alignment is obtained as the sum of weights of the edges on its corresponding path. A transition
from state A to either state B or state C adds a score of −e (the opening of a gap), while a transition from state B to
state B or a transition from state C to state C adds a score of −d (a continuing gap). A transition to state A adds the
corresponding score for aligning the two characters of x and y respectively.

Needleman-Wunsch as HMM

Let’s convert the above finite state machine into an HMM.

1

A
Pxiyj

C
Pyj

B
Pxi

1 – δ

1 – 2ε

1 – δ

δ

δ

ε

ε

A
Pxiyj

C
Pyj

B
Pxi

1 – δ

1 – 2ε

1 – δ

δ

δ

ε

ε

Figure 2: Needleman-Wunsch HMM

We replace the scores on the edges with transition probabilities. For each state, we also assign an emission probability
for the corresponding emission. For instance, since state A emits two characters xi and yj , we have an emission
probability of pxiyj

. Recall that pxiyj
is the probability of seeing xi aligned with yj . Similarly, state B has an emission

probability pxi
for emitting xi. Recall that pxi

is the probability of seeing an xi. State C is similar to state B. Let’s not
worry about the meaning of the transition probabilities for now, but obviously ε is related to the opening of a gap and
δ is related to the continuing gap.

We can always model the length of an alignment by adding an explicit end state as the following figure shows, but
let’s not worry about this.

E

τ

τ

τA
Pxiyj

C
Pyj

B
Pxi

1 – δ – τ

1 – 2ε – τ

1 – δ – τ

δ

δ

ε

ε

E

τ

τ

τ E

τ

τ

τA
Pxiyj

C
Pyj

B
Pxi

1 – δ – τ

1 – 2ε – τ

1 – δ – τ

δ

δ

ε

ε

A
Pxiyj

C
Pyj

B
Pxi

1 – δ – τ

1 – 2ε – τ

1 – δ – τ

δ

δ

ε

ε

Figure 3: Needleman-Wunsch HMM with end state

Now given an alignment, we can ask the following: What is the probability of obtaining this alignment? Here’s an
example:

Consider the following alignment:

VLSPAD-K
HL--AESK

Starting at A, the probability of obtaining this alignment is:

(1− 2ε)pV H .(1− 2ε)pLL.εpS .δpP .(1− δ)pAA.(1− 2ε)pDE .εpS .(1− δ)pKK

We can also ask the following question: Given two sequences, what is their most probable alignment? This of course
can be solved by a Viterbi algorithm. But we have to be careful here since there is an extra dimension in the search
space because of the extra emitted sequence. Therefore, instead of using vk(i) as before, we will have to use vk(i, j).
Note that i and j are not synchronized because x and y are not generated in a synchronized way (there might be gaps
in the alignment and regardless of that x and y might have different lengths). Nevertheless, vk(i, j) can advance only in
certain ways: In state A both i and j advance, in state B only i advances, and in state C only j advances. With these
restrictions, the Viterbi algorithm will be as follows:

2

vA(0, 0) = 1, vA(i, 0) = vA(0, i) = 0
vB(0, 0) = 0, vB(i, 0) = εδi−1px1 . . . pxi

, vB(0, j) = 0
vC(0, 0) = 0, vC(i, 0) = 0, vC(0, j) = εδj−1py1 . . . pyj

for i = 1...m, j = 1..n

vA(i, j) = pxiyj .max





(1− 2ε)vA(i− 1, j − 1)
(1− δ)vB(i− 1, j − 1)
(1− δ)vC(i− 1, j − 1)

vB(i, j) = pxi
. max

{
εvA(i− 1, j)
δvB(i− 1, j)

vC(i, j) = pyj .max
{

εvA(i, j − 1)
δvC(i, j − 1)

return max[vA(m,n), vB(m,n), vC(m,n)]

Of course, by keeping pointers as before, we obtain the most probable alignment itself.
Now this Viterbi algorithm looks very similar the the Needleman-Wunsch algorithm. Performing Viterbi in log space

will definitly make it even more similar to Needleman-Wunsch (transforming multiplications to additions). Let’s do even
more. We will modify the Viterbi algorithm to directly compute the log-odds ratio of the maximum probability of an
alignment (path in HMM) to the probability of obtaining the sequences at radom; therefore, to compute the maximum
log-odds ratio. Of course we can do this my simply dividing the result of the Viterbi algorithm by the probability of
obtaining the sequences at random, and then taking the log. But we want to see how the Viterbi algorithm will look
like if it is made to compute this directly.

log-odds Viterbi

In order to obtain the log-odds Viterbi algorithm, we will constrcut a model for two random sequences and then
perform Viterbi in log space with both models in mind: the previous HMM and the random model.

Let us first define a model for two random sequences. All we need is for the model to generate the two sequences
independently at random. The following HMM captures this aspect.

µ

X
Pxi

Y
Pyj

1 – µ

1 – µµ

1 – µ 1 – µµ µ

µ

X
Pxi

X
Pxi

Y
Pyj

1 – µ

1 – µµ

1 – µ 1 – µµ µ

Figure 4: A model for two random seuqnences

The random model generates sequence x first, then seuquence y indendently of x. While generating x, each character
xi is emitted according to the probability xi. Same for y. Note that the model allows empty sequences for both x and
y.

The probability of two sequences x and y being generated by the random model is:

p(x, y) = µ2(1− µ)m+n
∏

i=1...m

pxi

∏

j=1...n

pyj

We will obtain the log-odds Viterbi as follows. Assume that an alignment of x and y is obtained optimally by
a path with probability p = p1.p2.p3..... Assume also that x and y can be obtained by the random model with
probability q = q1.q2.q3..... Then we will modify Viterbi to use (p1/q1).(p2/q2).(p3/q3).... as the probability of the
path. If we succeed in doing this, then performing Viterbi in log space will compute what we want, the log-odds ratio
log(p1/q1) + log(p2/q2) + log(p3/q3) +

How can we do that? We will identify “steps” in each model with a probability for each step. Then we will associate
steps together in a way to make both models generate x and y at the same time, i.e. if the alignment model generates a
character in a sequence, the random model will generate the same character in the same sequence. For each step with
probability p in Viterbi, we replace p by p/q, where q is the probability of the corresponding step in the random model.
Therefore, we need to identify steps with their contributed probabilities in both models, then associate steps together.

3

• In the alignment model

– each match step contributes (1− 2ε)pxiyj
(well, it depends on how state A is reached, but let us assume for

now that we always reach A from A).

– each start gap step contributes εpxi
or εpyj

. To correct for above, replace ε with ε 1−δ
1−2ε .

– each continuing gap step contributes δpxi
or δpxi

.

• In the random model

– each character step contributes (1− µ)pxi
or (1− µ)pyj

.

– all terms are counted except for a µ2.

vA(0, 0) = 1, vA(i, 0) = vA(0, i) = 0
vB(0, 0) = 0, vB(i, 0) = ε 1−δ

1−2εδ
i−1px1 . . . pxi

, vB(0, j) = 0
vC(0, 0) = 0, vC(i, 0) = 0, vC(0, j) = ε 1−δ

1−2εδ
j−1py1 . . . pyj

for i = 1...m, j = 1..n

vA(i, j) = pxiyj
. max





(1− 2ε)vA(i− 1, j − 1)
(1− 2ε)vB(i− 1, j − 1)
(1− 2ε)vC(i− 1, j − 1)

vB(i, j) = pxi
. max

{
ε 1−δ
1−2εvA(i− 1, j)

δvB(i− 1, j)

vC(i, j) = pyj . max
{

ε 1−δ
1−2εvA(i, j − 1)

δvC(i, j − 1)
return max[vA(m,n), vB(m,n) 1−2ε

1−δ , vC(m,n) 1−2ε
1−δ]

The reason for having the extra term 1−δ
1−2ε is the following: we assumed that a match (state A) is always reached from

state A and hence always contributes a probability 1 − 2ε. However, it is possible that state A is reached from either
state B or state C, in which case it will contribute a probability of 1 − δ and not 1 − 2ε. Therefore, we anticipate this
before it happens, and as soon as we start a gap, we multiply the probability by an adjusting factor 1−δ

1−2ε . When we
come back to A from the gap, we (mistakingly) multiply the probability by 1− 2ε, which in presence of the previously
adjusting factor 1−δ

1−2ε , produces the correct probability 1− δ.
But what if we do not come back to A after the last transition out of A? In that case we end up in state B or C;

therefore, we have to cancel this adjusting factor at the end.
Now let us associate steps together:

alignment model random model
match xi with yj generate xi and yj

start gap in y with xi generate xi

start gap in x with yj generate yj

continuing gap in y with xi generate xi

continuing gap in x with yj generate yj

Now let us define log(p/q) for each step of the alignment model:

match step: call this s(xi, yj) = log
pxiyj

(1−2ε)

(1−µ)pxi
(1−µ)pyj

= log
pxiyj

(1−2ε)

pxi
pyj

+ log 1
(1−µ)2 ≈ log

pxiyj
(1−2ε)

pxi
pyj

continuing gap step: call this −d = log δpxi

(1−µ)pxi
= log δ

1−µ ≈ log δ

start gap step: call this −e = log(εpxi

(1−µ)pxi

1−δ
1−2ε) ≈ log ε 1−δ

1−2ε

4

Rewriting the Viterbi algorithm in log space and using the modified probabilities we get:

VA(0, 0) = −2 log µ, VA(i, 0) = VA(0, i) = −∞
VB(0, 0) = −∞, VB(i, 0) = −e− (i− 1)d, VB(0, j) = −∞
VC(0, 0) = −∞, VC(i, 0) = −∞, VC(0, j) = −e− (j − 1)d
for i = 1...m, j = 1..n

VA(i, j) = s(xi, yj) + max





VA(i− 1, j − 1)
VB(i− 1, j − 1)
VC(i− 1, j − 1)

VB(i, j) = max
{

VA(i− 1, j)− e
VB(i− 1, j)− d

VC(i, j) = max
{

VA(i, j − 1)− e
VC(i, j − 1)− d

return max[VA(m,n), VB(m,n)− c, VC(m, n)− c]

VA(0, 0) is initialized to −2 log µ instead of 0 to account for the 1
µ2 term that was not included in any step of the

random model. The term c = log 1−δ
1−2ε is substracted from VB(m,n) and VC(m,n) since, as explained above, these

indicate that we did not come back to state A after the last transition out of A; therefore, we have to remove this factor
that we previously added.

The log-odds Viterbi is now the same as the Needleman-Wunsch algorithm. In fact, Needleman-Wunsch is just Viterbi
with an appropriate transformation! We knew from before that the score is related to the log-odds ratio of probabilities.
Now Viterbi gives more justification of this (we are actually after the most likely alignment compared to just a random
instance). We have a clear relation between the scores (even for gaps now) of Needleman-Wunsch and the parameters
of a probabilistic model.

The question now is: what do the model parameters ε, δ, and µ really represent? To answer this question, consider
a state X with a transition probability aXX = 1 − p. What is the expected duration in state X? This is a geometric
distribution. Each time we have a probability p of leaving X. Therefore, the expected duration in state X is 1

p . Applying
this to our three parameters we have:

• 2ε = 1
Lu

, where Lu is the expected length of ungapped regions (expected duration in state A). Note that if Lu ↗,
then ε ↘, then e ↗. Therefore, the start gap penalty is high if ungapped regions are large, which makes sense.

• 1− δ = 1
Lg

, where Lg is the expected length of a gap (expected duration in state B or state C). Note that if Lg ↗,
then δ ↗, then d ↘. Therefore, the additional gap penalty is small if gaps are large, which makes sense.

• µ = 1
L , where L is the expected length of an arbitrary sequence. Therefore, µ is very small.

References

Durbin R. et al, Biological Sequence Analysis, Chapter 4.

5

