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Alignment
Affine gap model

A(i – 1, j – 1) 
B(i – 1, j – 1) 
C(i – 1, j – 1)

A(i, j) = s(i ,j) + max

A(i – 1, j) – e
B(i – 1, j) – dB(i, j) = max

A(i, j – 1) – e
C(i, j – 1) – dC(i, j) = max

C: gaps in x

B: gaps in y

A: match
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Finite state machine
An alignment corresponds to a 
path in the finite state machine

A
(+1,+1)

C
(+0,+1)

B
(+1,+0)

s(xi,yj)

s(xi,yj)

s(xi,yj)

– d

– d

– e

– e
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Probabilistic model HMM
for related sequences

With transitional probabilities and emission probabilities,
generates two sequences simultaneously

A
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Modeling length
By adding an end state

E

τ

τ

τA
Pxiyj

C
Pyj
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Pxi
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1 – δ – τ

δ

δ

ε
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Example

x = VLSPADK y = HLAESK

Possible alignment:

states: A A A B B A A C A E
| | | | | | | |

emissions:  | | | | | | | |
| | | | | | | |

x: V L S P A D   K 
y: H L     A E S K

What is the most probable alignment (path in HMM)?

P = (1-2ε-τ)PVH.
(1-2ε-τ)PLL.
εPS.
δPP.
(1-δ-τ)PAA.
(1-2ε-τ)PDE.
εPS.
(1-δ-τ)PKK.
τ

E

τ

τ

τ
A

Pxiyj

C
Pyj

B
Pxi

1 – δ – τ

1 – 2ε – τ

1 – δ – τ

δ

δ

ε

ε
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Viterbi algorithm
• All the algorithms we have seen for HMM apply, e.g. Viterbi

• But there is an extra dimension in the search space because of the 
extra emitted sequence

• Instead of using vk(i), we will use vk(i,j) because an observation xi
does not necessarily mean an observation for yi.

• Imagine we have two clocks, one for x, and one for y, that work 
differently in different zones.

• Therefore, v(i,j) can advance only in certain ways:
– In zone A, both i and j advance. 
– In zone B, only i advances. 
– In zone C, only j advances.
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Viterbi

(1-2ε-τ)vA(i – 1, j – 1) 
(1-δ-τ)vB(i – 1, j – 1) 
(1-δ-τ)vC(i – 1, j – 1)

vA(i, j) =  Pxiyj . max

εvA(i – 1, j)
δvB(i – 1, j)vB(i, j) = Pxi . max

εvA(i, j – 1)
δvC(i, j – 1)vC(i, j) = Pyj . max

vE = τ.max(vA(m,n), vB(m,n), vC(m,n))

vA(0,0) = 1, vA(i,0) = vA(0,i) = 0
vB(0,0) = 0, vB(i,0) = εδi-1px1…pxi, vB(0,j) = 0
vC(0,0) = 0, vC(i,0) = 0, vC(0,j) = εδj-1py1…pyj

for i=1..m, j=1..n
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Observation

• Viterbi algorithm looks very similar to Needleman-Wunsch

• Let’s investigate more this similarity

• Performing Viterbi in log space will definitely make it look like           
Needleman-Wunsch (multiplication � additive), let’s do even more…

• Let’s compute the log-odds ratio of the max probability of an alignment 
(path) to the probability of obtaining the sequences at random, therefore 
compute the maximum log-odds ratio.

– Construct a model for random sequences
– Perform Viterbi in log space with both models in mind

• We should then see almost the same algorithm
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Two HMMs at the same time
alignment
HMM
path

random
HMM
path

p = p1.p2.p3……

p = q1.q2.q3……

alignment
HMM
path

p = (p1/q1) . (p2/q2) . (p3/q3)……

log p = log (p1/q1) + log (p2/q2) + log (p3/q3)……

and associate steps together

for each step here….

find a corresponding step here….
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Random model

x and y are generated independently according 
to the individual probabilities Pxi and Pyi

p(x,y | R) = µ(1 – µ)mΠi=1..mPxi . µ(1 – µ)nΠj=1..nPyj

= µ2(1 – µ)m+n Πi=1..mPxi Πj=1..nPyj

µ

X
Pxi

Y
Pyj

1 – µ

1 – µµ

1 – µ 1 – µµ µ
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Aligned v.s. random
(identifying steps)

• In the alignment model:
– Each match step contributes

(1-2ε-τ)Pxiyj (…depends)
– Each start gap step contributes

εPxi or εPyj

– Each additional gap step contributes
δPxi or δPyj

• In the random model:
– Each letter step contributes

(1-µ)Pxi or (1-µ)Pyj

– All terms are counted except 
for a µ2

µ

X
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Y
Pyj

1 – µ
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1 – µ 1 – µµ µ
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Aligned v.s. random
(associating steps)

Alignment model Random model

match xi yj generate xi and yj

start gap in y with xi generate xi

start gap in x with yj generate yj

gap in y with xi generate xi

gap in x with yj generate yj
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Obtain p/q for each step…

adjustment factor 
to correct for s(xi,yj)

match step

corresponding 
random steps

gap step

corresponding 
random step

start gap step

corresponding 
random step
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Start gap adjustment factor
• The contribution of state A assumes that a match always 

follows a match.

• If state A (match) is reached from state B or state C (a gap), 
then the term contributed to the probability of the path is     
(1-δ-τ) PxiPyj and not (1-2ε-τ)PxiPyj

• We correct this before it happens when we first open the gap 
(go from A to B or C) by multiplying (1-δ-τ)/(1-2ε-τ) by the ε 
contribution of the start gap

• But what if we never go back to A? Then the score does not 
exactly correspond to the log-odd ratio.
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log-odds ratio Viterbi
(Needleman-Wunsch)

VA(i – 1, j – 1) 
VB(i – 1, j – 1) 
VC(i – 1, j – 1)

VA(i, j) = s(xi,yj) + max

VA(i – 1, j) – e
VB(i – 1, j) – dVB(i, j) =     max

VA(i, j – 1) – e
VC(i, j – 1) – dVC(i, j) =     max

VE = max(VA(m,n), VB(m,n) – c, VC(m,n) – c)
c = log(1-δ-τ) – log(1-2ε-τ)

vA(0,0) = -2logµ, vA(i,0) = vA(0,i) = -∞
vB(0,0) = -∞, vB(i,0) = -e-(i-1)d, vB(0,j) = -∞
vC(0,0) = -∞, vC(i,0) = -∞, vC(0,j) = -e-(j-1)d

for i=1..m, j=1..n

We don’t go back to state A. 
The anticipated error did not occur.
Correct the adjustment.
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What is the meaning of the scores?

• From Viterbi, we obtained Needleman-Wuncsh with scores directly 
related to the parameters of a probabilistic model.

Needleman-Wunsch is just Viterbi
with an appropriate transformation!

• We knew from before that the score is related to the log-odds ratio 
of probabilities. Now Viterbi gives more justification of this (we are 
actually after the most likely alignment compared to just a random 
instance!). 

• We have a clear relation between the scores (even for gaps now) of 
Needleman-Wunsch and the parameters of a probabilistic model. 

• The question now is: what do the model parameters ε, δ, τ, and µ
really represent?
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Duration of a state

Let us look at a single state with 
probability p of transitioning outside

What is the probability of staying in that 
state for a duration D.

1 – p

p



Saad Mneimneh

Duration of a state
Pr[D=1]=p
Pr[D=2]=(1 – p)p
Pr[D=3]=(1 – p)(1 – p)p

.

.

.
Pr[D=i]=(1 – p)i-1p

i.e. geometric distribution

This is a disadvantage of a Markov Chain: it imposes a geometric
distribution on the duration in a state, which might not be true.

There are ways around that… (see Durbin p. 69)

1 – p

p
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Mean duration

What is the mean duration?

E[D] = 1/p

1 – p

p
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Therefore…
2ε  ≈ 1/Lu,     Lu = mean length of ungapped regions

Lu ε       log ε e

1 – δ ≈ 1/Lg,    Lg = mean length of gap

Lg δ       log δ d

τ = 1/Lr, Lr = mean length of related sequences
( ∼ 0)

µ = 1/L, L = mean length of a sequence
( ∼ 0)
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