

Viterbi algorithm

- All the algorithms we have seen for HMM apply, e.g. Viterbi
- But there is an extra dimension in the search space because of the extra emitted sequence •
- Instead of using $v_k(i)$, we will use $v_k(i_i)$ because an observation x_i does not necessarily mean an observation for y_i .
- Imagine we have two clocks, one for $\boldsymbol{x},$ and one for $\boldsymbol{y},$ that work differently in different zones. ٠
- Therefore, v(i,j) can advance only in certain ways:
 In zone A, both i and j advance.
 In zone B, only i advances.
 In zone C, only j advances. •

Aligned v.s. random (associating steps)		
Alignment model	Random model	
match $x_i y_j$	generate x_i and y_j	
start gap in y with x_i	generate x_i	
start gap in x with y_j	generate y _j	
gap in y with x_i	generate x_i	
gap in x with y_j	generate y _j s₅	ad Mneimneh

log-odds ratio Viterbi (Needleman-Wunsch)		
$ \begin{array}{l} v_A(0,0) = -2 \log \mu, \; v_A(i,0) = v_A(0,i) = -\infty \\ v_B(0,0) = -\infty, \; v_B(i,0) = -\theta \cdot (i-1)d, \; v_B(0,j) = -\infty \\ v_C(0,0) = -\infty, \; v_C(i,0) = -\infty, \; v_C(0,j) = -\theta \cdot (j-1)d \end{array} $		
for i=1m, j=1n $V_{A}(i, j) = S(x_{\mu}y_{j}) + \max \begin{cases} V_{A}(i-1, j-1) \\ V_{B}(i-1, j-1) \\ V_{C}(i-1, j-1) \end{cases}$	1) 1) 1)	
$V_B(i, j) = \max \begin{cases} V_A(i-1, j) - e \\ V_B(i-1, j) - d \end{cases}$	We don't go back to state A. The anticipated error did not occur.	
$V_{c}(i, j) = \max \begin{cases} V_{A}(i, j-1) - e \\ V_{C}(i, j-1) - d \end{cases}$	Correct the adjustment.	
$V_{E} = \max(V_{A}(m,n), V_{B}(m,n) - c, V_{C}(m,n) - c)$ $c = \log(1-\delta-\tau) - \log(1-2\varepsilon-\tau)$	Saad Mneimneh	

What is the meaning of the scores?

From Viterbi, we obtained Needleman-Wuncsh with scores directly related to the parameters of a probabilistic model.

Needleman-Wunsch is just Viterbi with an appropriate transformation!

- We knew from before that the score is related to the log-odds ratio of probabilities. Now Viterbi gives more justification of this (we are actually after the most likely alignment compared to just a random instance!).
- We have a clear relation between the scores (even for gaps now) of Needleman-Wunsch and the parameters of a probabilistic model.
- The question now is: what do the model parameters $\epsilon,\,\delta,\,\tau,$ and μ really represent?

Saad Mneimneh

