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Physical Mapping

A physical map of a DNA tells the location of 
precisely defined sequences along the molecule.

– Restriction mapping: mapping of restriction sites of a 
cutting enzyme based on lengths of fragments

• Double Digest Problem DDP
• Partial Digest Problem PDP

– Hybridization mapping: mapping clones based on 
hybridization data with probes

• Non-unique probes
• Unique probes
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Restriction Mapping

• Ordering the fragments maps the restriction sites on 
the DNA.

• But lengths of fragments is not enough information, 
any order would satisfy the experiment data.

• Use two cutting enzymes

enzyme
apply

fragment lengths

uncut DNA
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Double Digest

enzyme A apply

fragment lengths

uncut DNA

apply enzyme B

enzyme B 

fragment lengths

uncut DNA

apply

enzyme A
apply

fragment lengths

uncut DNA

A

B

A ∧ B
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Double Digest Problem

Double Digest Problem DDP

given
1. multiset A of lengths from enzyme A

2. multiset B of lengths from enzyme B

3. multiset C of lengths from enzymes A ∧ B

determine an ordering of the fragments that is 
consistent with the three experiments
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Example

• : {3, 6, 8,10}
• : {4, 5, 7, 11}

• ∧ : {1, 2, 3, 3, 5, 6, 7}

enzyme A

enzyme B

enzyme A enzyme B

4 5 11 7
3 1 5 2 6 3 7
3 8 6 10A

C = A ∧ B
B
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Number of solutions

• The solution for a DDP might not be 
unique.

• The number of solutions grows 
exponentially
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Example

• : {1, 2, 2, 3, 3, 4}
• : {1, 1, 2, 2, 4, 5}

• ∧ : {1, 1, 1, 1, 1, 2, 2, 3, 3}

enzyme A

enzyme B

enzyme A enzyme B

4
3

1

5

2A
C = A ∧ B
B

4
1

3
1

23
11 2 2 3 1

1 2 2 1

3 2 1 3 4 2

2 2 1 4 1 5
2 1111 3 1 3 2
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Equivalence of Solutions

• Some different solutions might be equivalent.

• For instance, if (a1, a2, …, am) (b1, b2, …, bn) is a 
solution, then (am, am-1, …, a1) (bn, bn-1, …, b1) is 
also a solution.

• This is a Reflection. No fragment length data 
could possibly distinguish between the two, they 
only differ by orientation.



Saad Mneimneh

Reflection

4 5 11 7
3 1 5 2 6 3 7
3 8 6 10A

C = A ∧ B
B

45117
3152637
38610A

C = A ∧ B
B
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Overlap Equivalence

• Let’s define a more general type of equivalence called overlap 
equivalence.

• Let {Ai} be the set of fragments from A and {Bj} be the set of 
fragments from B.

• A solution defines an overlap matrix O, 
s.t. Oij = 1 if Ai overlaps with Bj.

• Two solutions are overlap equivalent if they define the same overlap 
matrix O.

• Reflections are overlap equivalent.
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Equivalence class

• A solution with all its overlap equivalent 
solutions form an equivalence class (this is 
an equivalence relation).

• Given a solution,
– What is the size of its equivalence class?
– Can we generate all solutions in the class?
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Observations

• If a solution has t – 1 coincident cuts sites, then 
it has t components.

• They can be permuted in t! ways without 
changing the overlap data.

• Each component can also be reflected without 
changing the overlap.

• Therefore, we can generate 2tt! solutions.
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Example

4
3

1

5

2A
C = A ∧ B
B

4
1

3
1

23
11 2 2 3 1

1 2 2 1

4
3

1

5

4
1

32
2 3 1

1

2
1

3
11 2

1 2 2

2
1

3
11 2

1 2 24
3

1

5

4
1

3 2
231

1

A
C = A ∧ B
B

A
C = A ∧ B
B

permute

reflect
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Another observation

• Given a solution, let 
– Aj = { Ak: Ak ⊂ Bj }
– Bi = { Bk: Bk ⊂ Ai }

• Permuting Aj and Bi does not change the 
overlap data
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Example

4 9 3

1 5236

1
1 4 1 3 1 2 2 3

4 9 3

3 5126

1
1 4 1 2 3 1 2 3

A
C = A ∧ B
B

A
C = A ∧ B
B
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Size of equivalence class

• Is it 2tt! Π|Aj|! Π|Bi|!

• Not quite!

• If a component has only one fragment in either A
or B, then a reflection is also a permutation.

• Let s be the number of such components, then 
the size of the equivalence class is:

2(t-s) t! Π|Aj|! Π|Bi|! 
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Other Equivalences?

• We can define other kinds of equivalences.

• Consider overlap size equivalence, i.e. two 
solutions are equivalent if they produce the 
same overlap sizes.

• Overlap equivalence => overlap size 
equivalence, but not the other way around.
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Example

4
3

1

5

2A
C = A ∧ B
B

4
1

3
1

23
11 2 2 3 1

1 2 2 1

switch => overlap size equivalent

A2 overlaps with B2 and B3
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Cassette Transformation 
Equivalence

• Let |C| = l

• For 1 ≤ i ≤ j ≤ l, Ic = { Ck: i ≤ k ≤ j } is the set 
of fragments from Ci to Cj.

• The cassette defined by IC is the set of 
fragments (IA, IB) that contain a fragment 
from IC.
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Cassette

4 3

1 8
2

4
1

3 2

3
11

2
2

3
1 22 1

55

3 8
4 2 4 3

Cassette for Ic = { C3, C4, C5, C6, C7 }

1
1
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Cassette 
left and right overlap

left overlap = ma – mb ma’ – mb’ = right overlap
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Cassette exchange

4 3

1 8
2

4
1

3 2

3
11

2
2

3
1 22 1

55

3 8
4 2 4 3

1
1

3

8
2

2
2

3
2

8
4 4 3

1
1

1

4 3

3
11

2
12 1

54
1

5

3
2

Two cassettes with the same left and right overlap 
can be exchanged

Left overlap = -2
Right overlap = 4
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6

Cassette Reflection

3 12

2 364 3

1

1

3
11 2 2 3 1 2 1

2

1

1
11

312

3 6 43

3
226312 1

Left overlap = -1
Right overlap = 1

A cassettes with the same left and right overlap 
(but different signs) can be reflected
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Cassette Equivalence

• Two solutions are cassette equivalent if 
there exists a series of cassette 
transformations (exchanges and 
reflections) that take on to the other.

• What is the size of an equivalence class?
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Alternating Euler Paths

• Consider a graph with colored edges

• An Euler path (cycle) is a path (cycle) that goes through every edge 
once

• An alternating Euler path (cycle) is an Euler path (cycle) such that 
consecutive edges on the path (cycle) have different colors

• Pevzner 1995 showed that given a solution, we can construct a 
special bi-colored graph called the border block graph.

• Each cassette equivalent solution corresponds to an alternating 
Euler path (cycle) in the graph and vice-versa.
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Fact

• Let di(v) be the number of edges of color i
incident to v.

• An edge bi-colored connected graph with 
dA(v) = dB(v) has an alternating Euler cycle.

• Proof: 
– Every vertex has even degree; therefore, the graph 

contains an Euler cycle.
– Construct the Euler cycle the usual way, but by using 

only distinct color edges when traversing a vertex.
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Exchange

• Consider an alternating path 
…x…y…x…y…

• It consists of 5 parts F1F2F3F4F5

• F1F2F3F4F5 � F1F4F3F2F5 is called an 
exchange if F1F4F3F2F5 is an alternating 
path
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Illustration

x

yF1 F2

F3

F4

F5

x

yF1 F2

F3

F4

F5

Saad Mneimneh

Reflection

• Consider an alternating path 
…x…x…

• It consists of 3 parts F1F2F3

• F1F2F3 � F1F2
−−−−F3 is called a reflection if 

F1F2
−−−−F3 is an alternating path, where F2

− is 
the reverse of F2.
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Illustration

x

x
F1

F3

F2
−

F1
F3

F2
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Fact

• Every two alternating Euler cycles in a    
bi-colored graph can be transformed into 
each other by a series of exchanges and 
reflections.

• Proof: Pevzner p. 29
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The border blocks

• Let I(Ai) = { Ck: Ck ⊂ Ai }

• Let I(Bj) = { Ck: Ck ⊂ Bj }

• If |I(X)| > 1, define the border blocks of X to be 
the left most and right most block in I(X).

• Ci is a border block is it is a border block for 
some fragment X.  
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Example

3

12
22

3

2 64 3 1

1 3
11 2 6 3 1 1

I(A3) = { C4, C5, C6, C7 }
Border blocks of A3: C4 and C7
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Lemma

• Each fragment X with |I(X)| > 1 contains exactly 
two border blocks.

• I(Ai) ∩ I(Bj) ≤ 1

• Assume no cuts in A and B coincide, then each 
border block is a border block for some 
Ai and some Bj, except C1 and Cl.
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Border graph

• Let B = { Ck : Ck is a border block }

• V = { |Ck| : Ck ∈ B } vertices

• E = { (|Ci|, |Cj|) : Ci and Cj ∈ B ∩ I(X) for some X }

• Each edge labeled by its X and colored A if X ∈
A and B if X ∈ B. 
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Example

3

12
22

3

2 64 3 1

1 3
11 2 6 3 1 1

1 2

A4

A3

A2

B1
B2

B5
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Alternating Euler path
in border block graph

• Each vertex has equal number of edges of each 
color, except possibly for |C1| and |Cl|.

• By adding one or two edges (depending on the 
colors) we can fix this. Therefore, the graph has 
an alternating Euler path or cycle.

• Let C1…Cm be the ordered set of border blocks, 
then P = |C1|…|Cm| is an alternating Euler path 
(cycle).
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Result

Cassette transformations do not change the border 
graph.

Let P be the alternating Euler path (cycle) corresponding 
a solution [A, B]. 

– If a solution [A’, B’] is obtained from [A, B] by cassette exchange 
(reflection), it will have a path P’ that can be obtained from P by 
an exchange (reflection).

– Let P’ be an alternating Euler path (cycle) obtained from P by 
exchange (reflection). Then there is a solution [A’, B’] that can be 
obtained from [A, B] by cassette exchange (reflection), where P’ 
corresponds to [A’, B’]
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Example

3

12
22

3

2 64 3 1

1 3
11 2 6 3 1 1

This corresponds to the cycle: 

123

2 1

1 3
11

3
2 2

6 43
2631 1

This corresponds to the cycle:

reflection

1 2

A2

A3

A4

B5

B1 B2

B1 A2 B2 A3 B5 A4

1 2 2 1 2 11

B1 A4 B5 A3 B2 A2

1 2 1 2 2 11
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Example

Cycle 1: 

1 2

A2

A3

A4

B5

B1 B2

B1 A2 B2 A3 B5 A4

1 2 2 1 2 11

Cycle 2: B1 A4 B2 A3 B5 A2

1 2 2 1 2 11

Cycle 1: B1 A2 B2 A3 B5 A4

1 2 2 1 2 11

B1 A2 B5 A3 B2 A4

1 2 1 2 2 11

B1 A2 B5 A3 B2 A4

1 2 1 2 2 11

B1 A4 B2 A3 B5 A2

1 2 2 1 2 11
Cycle 2: 
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Example (cont.)

3

12
22

3

2 64 3 1

1 3
11 2 6 3 1 1

3

12
22

3

2 64 3 1

1 3
11 2 6 3 1 1 B1 A2 B2 A3 B5 A4

1 2 2 1 2 11

B1 A2 B5 A3 B2 A4

1 2 1 2 2 11

B1 A2 B5 A3 B2 A4

1 2 1 2 2 11

B1 A4 B2 A3 B5 A2

1 2 2 1 2 11

3

12
22

3

2 6 43 1

1 3
11 1 63 2 1
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DDP is NP-complete

Proof: 
– DPP ∈ NP. A solution for DDP can be verified 

in polynomial time.

– Set Partition problem (classical one), which is 
NP-complete, reduces to DDP in polynomial 
time.
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DDP ∈ NP

• Given
– multiset A of lengths from enzyme A
– multiset B of lengths from enzyme B
– multiset C of lengths from enzymes A + B

• Solution
– two sets of restriction sites, a and b.

• Verification:
– Sort g = a ∪ b ∪ {0, L}, L = sum of all lengths in A
– Compute multiset c = { ci: ci = gi+1 – gi, 0 < i < |g| and gi+1  ≠ gi }
– Sort c and C and compare them
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Set Partition
Set Partition SP:

Given a set Ι of integers with total sum J

Can we partition Ι into two sets of sum J/2 each?

is NP-complete.

Given an SP instance, construct the following DDP:
A = Ι
B = {J/2, J/2}
C = Ι

DPP has a solution iff SP has a solution
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Partial Digest

enzyme
apply

fragment lengths

uncut DNA • One restriction enzyme 
only

• Obtain fragments for 
– every pair of cuts
– every cut and a boundary

• This can be achieved by 
missing a number of sites 
in every trial
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Partial Digest Problem
(turnpike problem)

Partial Digest Problem PDP

given
multiset ∆x of distances between every pair of points on 
the line

|∆x| = 

reconstruct the points on the line

2

)1(

2

−=��
�

�
��
�

� nnn
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PDP

• No polynomial time algorithm know

• Not known to be NP-complete

• Practical Backtracking algorithm due to 
Skiena et al. 1990
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The algorithm
• Find longest distance in ∆X, this decides the two outermost points, 

delete that distance from ∆X.

• Repeatedly position the longest remaining distance of ∆X.

• Since the longer distance must be realized from one of the two 
outermost points, we have two possible positions (left and right) for 
the point.

• For each of these two positions, check whether all the distances
from the position to the points already positioned are in ∆X.

• If they are, delete all those distances from ∆X and proceed.

• Backtrack if they are not for both of the two positions.
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Example

∆X = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }

∆X = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }

∆X = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
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Example (cont.)

∆X = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }

∆X = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
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Worst case: Exponential

We could end up backtracking
an exponential number of times
in this decision tree

It is not trivial to show that 
an exponential number of 
backtracking could occur

Zhang [1994] provided an 
example
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In practice…

• If we have real points in general positions, then 
one of the two choices will be pruned with 
probability 1.

• The algorithm runs in O(n2log n) expected time 
since we have O(n2) positions and all operations 
can be done on ∆X using binary search which 
takes O(log n2) = O(log n).
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enzyme 1
apply

fragment lengths

uncut DNA

apply
enzyme 2

enzyme 2

fragment lengths

uncut DNA

apply
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Example

• : {1, 2, 3, 5, 6}
• : {1, 3, 4, 9}

• ∧ : {1, 1, 1, 2, 2, 3, 3, 4}

enzyme A

enzyme B

enzyme A enzyme B

4 3

1 5236

9

A
C = A ∧ B
B 1

4 11 3 1 2 2 3


