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Physical Mapping

A physical map of a DNA tells the location of
precisely defined sequences along the molecule.

— Restriction mapping: mapping of restriction sites of a
cutting enzyme based on lengths of fragments
« Double Digest Problem DDP
« Partial Digest Problem PDP

— Hybridization mapping: mapping clones based on
hybridization data with probes
« Non-unique probes
« Unique probes
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Restriction Mapping

\« uncut DNA

e I \
fragment lengths

« Ordering the fragments maps the restriction sites on
the DNA.

» But lengths of fragments is not enough information,
any order would satisfy the experiment data.

 Use two cutting enzymes
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Double Digest

O
i= | —
ragment lengths
ey ’
wnestonA 4
B .
ragment lengths
uncut DNA /_
AOB

fragment lengths.

Double Digest Problem

Double Digest Problem DDP

given
1. multiset A of lengths from enzyme A
2. multiset B of lengths from enzyme B
3. multiset C of lengths from enzymes A OB

determine an ordering of the fragments that is
consistent with the three experiments
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Example

- ) :{3,6,8,10}
<) {4,5,7,11}
.D :{1,2,3,3,5,6,7}

A 3 8 6 10 |

c=a0B (3] 5 [2] 6 3] 7 |

B 4] 5 | 11 7 ]
T T




Number of solutions

» The solution for a DDP might not be
unique.

» The number of solutions grows
exponentially

Example

<) :{1,2,2,3,3,4}
<) {1,1,2,2,4,5)
.D :{1,1,1,1,1,2,2,3,3}

1 1 1 1
REHE 3 [2ffs] a2
c=A0B [fuf2]2] 1| 3 A IENNERE
B W2{2f 5 Jif 4 2]2fl 4 i 5
T T T T T

Equivalence of Solutions

« Some different solutions might be equivalent.

e For instance, if (a4, ay, ..., @) (b, by, ..., b)) is a
solution, then (&, an.1, -+, 81) (b, bpgs --., By) IS
also a solution.

« This is a Reflection. No fragment length data
could possibly distinguish between the two, they
only differ by orientation.




Reflection

A 3 6 10
c=A0B (3] 5 J2f 6 {3] 7
B 4| 5 | 11 |7
T T T
1
A 10 [ 6 8 3 |
C=AOB 7 [31 6 2] 5 3]
B 7| 11 ! 5 | 4|

‘Saad Mneimnen

Overlap Equivalence

Let's define a more general type of equivalence called overlap
equivalence.

Let {A} be the set of fragments from A and {B;} be the set of
fragments from B.

A solution defines an overlap matrix O,
s.t. O; = 1if A overlaps with B;.

Two solutions are overlap equivalent if they define the same overlap
matrix O.

Reflections are overlap equivalent.
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Equivalence class

A solution with all its overlap equivalent
solutions form an equivalence class (this is
an equivalence relation).

Given a solution,
—What is the size of its equivalence class?
— Can we generate all solutions in the class?
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Observations

« If a solution has t — 1 coincident cuts sites, then
it has t components.

¢ They can be permuted in t! ways without
changing the overlap data.

« Each component can also be reflected without
changing the overlap.

Therefore, we can generate 2't! solutions.
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Example
1 [ L
A AERREHE
c=aA08 [fiff2]2] 3 ikl 3
B 1!2!2 5 [if 4
' permute
[ T N W TN R | i
A AEHYEIRE
c=A0B [2]3f 3 pfld2]
B 5 || 4 1]2! -
reflect
R | B
A 34 [2]2]3
c=A0B |3 [t 3 |2]ipff2] |
B 4 Jf 5 1!2!2
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Another observation

» Given a solution, let
-4={A:A 0 Bj}
-5={B: B0 A}

« Permuting 4, and 3 does not change the
overlap data




Example

A 3 2 5
c=A0B [ 4 Jif3pj2][2]3
B i 4 | 9 |3
T T T
A 6 3 5
c=A0B [ 4 Jf2{3i2]3
B i 4 | 9 !3

Size of equivalence class
Is it 2! M|t [1|5)!
Not quite!

If a component has only one fragment in either A
or B, then a reflection is also a permutation.

Let s be the number of such components, then
the size of the equivalence class is:

269t [ ) 3!
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Other Equivalences?

We can define other kinds of equivalences.

Consider overlap size equivalence, i.e. two
solutions are equivalent if they produce the
same overlap sizes.

Overlap equivalence => overlap size
equivalence, but not the other way around.




Example

switch => overlap size equivalent

Ly

A 2 2] 4, |

c=a0B [d2]2] 3]y 3

B 12{2f 5 Jif 4
T T T

A, overlaps with B, and B,

Cassette Transformation
Equivalence

. Let|C|=1

s Forl<i<gjs<l I,={Cisk<]j}isthe set
of fragments from C; to C,.

» The cassette defined by I is the set of
fragments (l,, Ig) that contain a fragment
from ..

Cassette

T e R
2fff2fl] 4 J212]2h] 4 |3
EN

3ff3f2] 8
-

| =

Cassette for I, ={ C;, C,, Cg, Cq, C, }




Cassette
left and right overlap

left overlap = m, —m, m,’ —m,’ = right overlap
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Cassette exchange

oLt L__r___
1 4 {3 5 2| 4 5 |3
o2 4 [2(2]2) 4 |3
sffafal 8 3] 8
| = gy e —
Left overlap = -2 e . .
Right overlap = 4 ><
S N N TR nlly G
W a] 5 [2{a3] 5 |3
2[20 4 [2[2[hl2hi] 2 |3

3|3] 8 j3f2] s
4 H=-=F4

==

Two cassettes with the same left and right overlap
can be exchanged
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Cassette Reflection

Left overlap = -1
Right overlap = 1

3
[2]2]n
4l
T ——1

Ble
=

A cassettes with the same left and right overlap
(but different signs) can be reflected
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Cassette Equivalence

» Two solutions are cassette equivalent if

there exists a series of cassette
transformations (exchanges and
reflections) that take on to the other.

» What is the size of an equivalence class?
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Alternating Euler Paths

Consider a graph with colored edges

An Euler path (cycle) is a path (cycle) that goes through every edge
once

An alternating Euler path (cycle) is an Euler path (cycle) such that
consecutive edges on the path (cycle) have different colors

Pevzner 1995 showed that given a solution, we can construct a
special bi-colored graph called the border block graph.

Each cassette equivalent solution corresponds to an alternating
Euler path (cycle) in the graph and vice-versa.
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Fact

Let d(v) be the number of edges of color i
incident to v.

An edge bi-colored connected graph with
da(v) = dg(v) has an alternating Euler cycle.

Proof:

— Every vertex has even degree; therefore, the graph
contains an Euler cycle.

— Construct the Euler cycle the usual way, but by using
only distinct color edges when traversing a vertex.
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Exchange

» Consider an alternating path
XY XY

* It consists of 5 parts F,F,F;F,F<

» F,F,F;F,Fs > F,F,F;F,F; is called an
exchange if F,F,F;F,F is an alternating
path

lllustration
F3
Fy F, y Fs
w
FS
Fy F, y Fs

Reflection

» Consider an alternating path
C XX

« It consists of 3 parts F,F,F,

« F,F,F,> F,F,"F, is called a reflection if
F,F,"F; is an alternating path, where F," is
the reverse of F,.




[llustration

Fact

» Every two alternating Euler cycles in a
bi-colored graph can be transformed into
each other by a series of exchanges and
reflections.

» Proof: Pevzner p. 29

The border blocks

« Letl(A)={C: C,OA}

LetI(B) ={Cy: C,UB;}

If |I(X)| > 1, define the border blocks of X to be
the left most and right most block in 1(X).

» C;is a border block is it is a border block for
some fragment X.




Example

3

2 e [ M2l
2| 4 6 |3]|3H
T T T T T

I(A)) ={Cy, Cs, G5, C; }
Border blocks of A;: C, and C,

Lemma

¢ Each fragment X with |I(X)| > 1 contains exactly
two border blocks.

< I(A)nI(B) <1

« Assume no cuts in A and B coincide, then each
border block is a border block for some

A and some B;, except C; and C;.
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Border graph

* Let 38={C,: Cyis aborder block }

V={|C]:C,OB} vertices
* E={(IC|, IC) : Cjand C; O B n I(X) for some X }

« Each edge labeled by its X and colored A if X O
Aand B if X OB.




Example

] ] ] Ay
sl 1 [3] A
2l al 6 {afall o @ @ e
. . P B
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Alternating Euler path
in border block graph

« Each vertex has equal number of edges of each
color, except possibly for |C,| and |C].

« By adding one or two edges gdepending on the
colors) we can fix this. Therefore, the graph has
an alternating Euler path or cycle.

e Let C,...C,, be the ordered set of border blocks,
then P = |81|...|Cm| is an alternating Euler path
(cycle).
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Result

Casshette transformations do not change the border
graph.

Let P be the alternating Euler path (cycle) corresponding
a solution [A, B].

— If a solution [A’, B'] is obtained from [A, B] by cassette exchange
(reflection), it will have a path P’ that can be obtained from P by
an exchange (reflection).

— Let P’ be an alternating Euler path (cycle) obtained from P by
exchange (reflection). Then there is a solution [A’, B'] that can be
obtained from [A, B] by cassette exchange (reflection), where P’
corresponds to [A’, B']
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Example

reflection

This corresponds to the cycle: lBllAZ B, As Bs A,

22121

B,

B, A, Bs Ay B, A,

This corresponds to the cycle:
1121221
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Example

Cycle 1: By A2 B, A B Ay
1122121
B, A, BsA; B, A,
1121221

B, A, By Ay B, A,
1121221

Cycle 2: B; A, B, A3 Bg A,

Cycle 2:
122121 1122121
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Example (cont.)

BlAZ BZA3 BSAA
1122121

B, A, BsA; B, A,
1121221

BlAZ BSA3 BZA4
1121221

B, A, B, A Bg A,
1122121
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DDP is NP-complete

Proof:

— DPP O NP. A solution for DDP can be verified
in polynomial time.

— Set Partition problem (classical one), which is
NP-complete, reduces to DDP in polynomial
time.
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DDP I NP

* Given
— multiset A of lengths from enzyme A
— multiset B of lengths from enzyme B
— multiset C of lengths from enzymes A + B

* Solution
— two sets of restriction sites, a and b.

 Verification:
— Sortg=albO{0, L}, L=sum of all lengths in A
— Compute multiset ¢ = {¢;: ¢;= g, —0; 0 <i<|g| and g;,, #g;}
— Sort c and C and compare them
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Set Partition

Set Partition SP:
Given a set / of integers with total sum J
Can we partition / into two sets of sum J/2 each?

is NP-complete.

Given an SP instance, construct the following DDP:
A=/

B = {J/2, J/2} T
c=1/ i
T

DPP has a solution iff SP has a solution
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Partial Digest

1) I T . Obtain fragments for
— every pair of cuts

[

— — every cut and a boundary
|

[
[

uncutDNA  « One restriction enzyme
only

| * This can be achieved by
| missing a number of sites
in every trial

fragment lengths
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Partial Digest Problem
(turnpike problem)

Partial Digest Problem PDP

given
multiset Ax of distances between every pair of points on
the line

n -1
Iax| = [2)=—"(”2 )

reconstruct the points on the line
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PDP

» No polynomial time algorithm know
* Not known to be NP-complete

« Practical Backtracking algorithm due to
Skiena et al. 1990
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The algorithm

Find longest distance in AX, this decides the two outermost points,
delete that distance from AX.

Repeatedly position the longest remaining distance of AX.

Since the longer distance must be realized from one of the two
ohutermost points, we have two possible positions (left and right) for
the point.

For each of these two positions, check whether all the distances
from the position to the points already positioned are in AX.

If they are, delete all those distances from AX and proceed.

Backtrack if they are not for both of the two positions.
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Example

£X={2,2,33,4,56,7,810}
AX={2,2,3,3,4,56,7,810}

L o s

AX={2,2,3,34,56,7,810}

HoX||tot1e
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Example (cont.)

AX={2,2,3,3,4,56,7,810}

oo XKoo

AX={2,2,3,3,4,56,7,810}

oo ttoite
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Worst case: Exponential

It is not trivial to show that
an exponential number of
backtracking could occur

We could end up backtracking
an exponential nymber of times
in this decision tree

Zhang [1994] provided an
example
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In practice...

« If we have real points in general positions, then
one of the two choices will be pruned with
probability 1.

e The algorithm runs in O(n2log n) expected time
since we have O(n?) positions and all operations
can be done on AX using binary search which
takes O(log n?) = O(log n).
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uncut DNA

fragment lengths

=

uncut DNA

fragment lengths
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Example

<) :{1,2,3,5,6}
<) 1{1,3,4,9
.D {1,1,1,2,2,3,3,4}

1
A 6 (32| 5
c=A0B [ 4 Jl3f2{2]3
B 4 fl 9 I3
T T




