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As mentioned before, we have two approaches for physical mapping: Restriction mapping and mapping by hybridiza-
tion. We covered restriction mapping previously through the two problems of double digest and partial digest. We now
look at mapping by hybridization.

While restriction mapping involves the mapping of restriction sites (precise short sequences) of a cutting enzyme based
on the lengths of the restriction fragments, mapping by hybridization involves the mapping of clones (fragments) based
on hybridization data with probes. The mapping of clones in this case is not exact; we try to find a likely overlap of the
clones.

Mapping by hybridization - a quick jump into abstraction

Mapping by hybridization involves a number of biological experiments known as hybridization experiments. Several
copies of the DNA are cut into overlapping fragments, called clones in this context. A set of probes is constructed, and
for each clone, the set of probes that hybridize with it is determined. This hybridization data can be represented as a
matrix D, where Dij = 1 iff probe j hybridizes with clone i. Given D, the problem is to find a possible overlap of the
clones on the original DNA.

The matrix D does not constitute enough information for determining the overlap. Many overlaps can be consistent
with the experimental data. For instance, we could assume that clones do not actually overlap and occur consecutively
along the DNA. To make the problem sound, i.e. to be able to favor one overlap over another, we need to take into
consideration some information about the clones and how the probes where generated. In other words, we need to model
the clones and probes.

A famous model is the Lander-Waterman model:

• The clones have equal length and each clone start at a position that is uniformly distributed and independent from
all other clones

• Probes (represented as points) are placed along the DNA according to mutually independent Poisson processes

Given an instance D obtained from the model above, the problem is to find the most likely overlap of clones that is
consitent with D.

Alizadeh et al. 1995 showed that the problem of obtaining this maximum likelihood can be approximated as the
problem of minimizing the number of occurrnences of probes needed to explain D: the Shortest Covering String SCS
problem.

Shortest Covering String SCS: A clone c is covered by a string s if s has a substring containing only the probes
that hybridize with c (order and multiplicity are ignored). The shortest covering string is the shortest string that covers
all the clones.

We have two variations for the SCS problem:

• SCS with Non unique probes (NP-hard)

• SCS with unique probes (polynomial)

SCS with non unique probes

If probes are non unique, then a probe can occur in more than one place along the DNA. Since a probe needs not be
unique on the DNA, these non unique probes can afford to be relatively short, and hence are easy to generate biologically.
As we have seen before with restriction mapping, what might seem easy to accomplish biologically might be very hard to
solve computationally, and vice versa. We will encounter this situation here again: Finding the shortest covering string
is NP-hard when probes are non unique. However, we will see later that if we can ensure that probes are unique (every
probe occurs once along the DNA, harder biologically), then the shortest covering string can be obtained in polynomial
time.
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In this section we will focus on a heuristic algorithm for SCS with non unique probes since the problem is NP-hard.
An important discovery is the following:

Given a permutation of the clones π, finding the shortest string sπ that covers the clones in the order (of their left
end points) given by π has a polynomial time algorithm. For simplicity, we say that sπ covers π. Of course, this is not
necessarily the shortest covering string as defined above.

For example, given the permutation (1, 3, 2) of clones C1 = {A,B,C}, C2 = {B, C, D}, and C3 = {C, D,E}, the
shortest string that covers this permutation is s = ABCEDBC. Note that this is longer than the shortest covering
string s′ = ABCDE which covers the permutation (1, 2, 3).

The shortest covering string can be alternatively defined as the shortest string in {sπ |π is a permutation}. Explicitely
trying all permutations will give an exponential time algorithm because we have n! possible permutations.

Using the polynomial time algorithm for finding sπ for a given π, we develop a heuristic algorithm that does not
necessarily return the shortest covering: we start with an arbitrary permutation π and compute sπ in polynomial time.
Then we change π slightly to obtain a number of neighboring permutations (polynomially many of course), and for each
such permutation π′, we compute sπ′ in polynomial time. If sπ′ is shorter than sπ for some neighbor π′ of π, then we
set π = π′ and repeat the process. Otherwise, we stop. It is obvious that after each iteration, we get a shorter covering
string. This will therefore stop after at most a polynomial number of iterations (the length of the original string sπ is
polynomial in the size of the problem). The final string is not necessarily to shortest covering string, but it represents
a local minimum along a path of neighboring permutations. Below we show the algorithm:

start with an arbitrary permutation of clones π
length ←∞
compute sπ in polynomial time
while |sπ| < length

length ← |s|
compute a set of neighbors of π (polynomially many)
for each neighbor π′ of π

compute sπ′ in polynomial time
if |sπ′ | < |sπ|

then π ← π′

return sπ

It remains to show how to compute sπ for a given π in polynomial time. For developing the algorithm we will adopt
the following three assumptions:

• No clone properly contains another (motivated by the Lander-Waterman model where all clones have the same
length).

• The DNA is completely covered by clones, i.e. we have no gaps (motivated by good coverage of the DNA, the
expected fraction of uncovered DNA is e−nl/T where n is the number of fragments and l is their length, and T is
the length of the DNA).

• Without loss of generality, π = (1, 2, ..., n), and hence we consider overlaps in which C1, C2, ..., Cn appear in order
(of their left end points).

Given the three assumptions above, an overlap of clones C1, ..., Cn defines intervals marked by their end points.
In other words, every interval is a maximal interval that does not contain a clone’s end point (left or right). This is
illustrated in the figure below.
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Figure 1: Intervals defined by an overlap
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Each interval [i, j] means that clones Ci to Cj overlap. We will add another assumption to our list above:

Error Free Hybridization: If a probe p ∈ [i, j], then p hybridizes with all clones from Ci to Cj . A probe is therefore
considered as a point in an interval of overlaps (i.e. we cannot detect an overlap smaller than the length of a probe).

We will define two intervals [i, j] and [i′, j′] to be conflicting iff i < i′ ≤ j′ < j. Then the intervals defined by an
overlap of C1, ..., Cn are conflict free.

Proof: If not, then some clone will contain another. Assume [i, j] and [i′, j′] are conflicting, e.g. i < i′ ≤ j′ < j. The
left end points of the intervals are sorted (clones appear in order). Without loss of generality, the following figure depicts
the situation of conflict, where clone j is contained in clone j′ (and possibly others) (i′ and j′ could be the same).

conflicting

[i, j]                     [i’, j’]

containment

i
i’

j’
j

The conflict-free property implies that intervals defined by an overlap of C1, ..., Cn can be sorted by both their left
end points and their right end points (how? first sort the intervals by the left end points, then within each set of intervals
with the same left end point, sort the intervals by their right end points). In fact, conflict free and the ability to be
sorted by both end points are equivalent.

Now we define an equivalence between an overlap of C1, ..., Cn and a set conflict free intervals.

• Every overlap of C1, ..., Cn defines a conflict free set of intervals.

• For every conflict free set of intervals I, there is a conflict free set of intervals I ′, I ⊆ I ′, that defines an overlap
of C1, ..., Cn.

The first part of the equivalence is trivial and we just proved it. To prove the second part, we explicitly construct an
overlap with a confclit free set of intervals that contain all intervals in I. First we add [1, 1] and [n, n] to the set I (if
needed). Note that I is still conflict free because no interval can contain [1, 1] or [n, n]. Then we sort all intervals in I
by both their left end points and their right end points. Finally we fill gaps by adding new intervals to I. For instance,
to fill the gap between [i, j] and [k, l] we first increment j until it reaches l, then increment i until it reaches k − 1, e.g.

[i, j], [i, j + 1], ..., [i, l], [i + 1, l], ..., [k − 1, l], [k, l]

This is equivalent to saying that clones j + 1 to l start in successive intervals, then clones i to k− 1 ends in successive
intervals, thus going from [i, j] to [k, l] with conflict free intervals.

The equivalence between a valid overlap (i.e. C1 to Cn) and the existence of conflit free intervals is an imporant one
that we will use in finding the shortest string that covers C1 to Cn in special cases, then generalize for all cases.

Consider the hybridization matrix D. Consider all intervals [i, j] such that there is a column with a a maximal run
of ones from Ci to Cj . In other words, there is a probe p that hybridizes with Ci, ..., Cj but not with Ci−1 and Cj+1

(we can assume C0 and Cn+1 are dummy clones with no hybridizations). We say that [i, j] is an interval of p. If these
intervals are conflict free, then they can define an overlap of C1, ..., Cn by our equivalence above. Therefore, if we sort
these intervals (by their left end points and their right end points) and place each probe in its intervals, we end up with
a string of probes that covers C1 to Cn in order. Figure 2 shows an example.

The conflict free intervals of D in Figure 2 are: [1, 2], [6, 8], [2, 4], [7, 8], [1, 1], [3, 5], [7, 9], [2, 3], [3, 6], [3, 8]. Sorting
them and placing each probe in its intervals give the following:

[1, 1] [1, 2] [2, 3] [2, 4] [3, 5] [3, 6] [3, 8] [6, 8] [7, 8] [7, 9]
C A E B CD F G A B D

The string CAEBCDFGABD is a string that covers C1, ..., Cn in order. The question is now the following: is it the
shortest such string? The answer to this question is yes. We can easily show that in any string covering C1, ..., Cn, each
probe has to appear a number of times euqal to the number of its intervals.
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Figure 2: Conflict free intervals of D

Proof: This is a direct consequence of the following fact: Let i < j < k, then any probe common to Ci and Ck but
not Cj has to appear twice, once for Ci and another time for Ck; otherwise, Cj would be contained in Ci, as illustrated
below.

Cj has to start after the probe
otherwise Cj will be contained in Ci

Ck cannot be
covered by the 
same probe

Ci

Cj

Ck

Therefore, what we obtain in the special case of conflict free intervals of D is shortest because each probe appears
exactly a number of times equal to the number of its intervals.

We sould like to generalize this idea to all cases. What if the intervals of D are not conflit free? We will see that the
problem of finding the shortest string that covers C1, ..., Cn reduces to sub-dividing the set of intervals into a conflict
free set with a minimum number of intervals, and then obtain the shortest covering string as explained above.

The see why the above is true, first note that a set of t conflict free intervals in D defines a covering string of length
t (we just proved this above). Moreover, a covering string of length t defines a set of t conflict free intervals in D (not
necessarily maximal runs of 1’s anymore): (1) obtain an overlap of C1, ..., Cn given by the covering string, (2) the overlap
defines a set of conflict free intervals, (3), each occurrence of a probe p falls within an interval (i, j), (4) an interval [i, j]
containing a probe p must be a run of 1’s (not necessarily maximal) in column p of matrix D (error-free assumption,
p hybridizes with Ci, ..., Cj , (5) therefore we find t conflict free intervals in D. Therefore, the shortest covering string
corresponds to the minimum number of conflict free intervals.

The problem is how to sub-divide the intervlas in a way to obtain a minimum number of conflict free intervals? Here’s
the strategy that we are going to use:

• Let [i′, j′] ⊂c [i, j] mean that i < i′ ≤ j′ < j.

• Sub-divide an interval [i, j] into the minimum number of intervals needed to remove any conflict with [i′, j′] where
[i′, j′] ⊂c [i, j].

• The sub-intervals of [i, j] must not create additional conflicts (this is key)

• Then we repeat this for every interval and hence we compare an interval [i, j] only with the original set of intervals

The most crucial aspect of the above algorithm is for the new sub-divisions not to create additional conflicts. Although
this seems unreasonable to assume, we will see how to ensure this feature. But first, lets see how we can sub-divide [i, j]
into the minimum number of intervals to remove conflicts with [i′, j′] where [i′, j′] ⊂c [i, j].

Consider the minimal j′ such that [i′, j′] ⊂c [i, j]. Then it is clear that a cut of [i, j] in the region [i, j′] is unavoidable,
since otherwise [i′, j′] ⊂c [i, j] remains. The best thing therefore is to delay this cut as much as possible, hence cutting
[i, j] at j′. This is illustrated in the Figure 3 below.
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cannot avoid a
cut in this region

Figure 3: Unavoidable cut

Inductive reasoning and the above idea suggest the following algorithm for sub-dividing the interval [i, j]:

• Find a maximum number of original intervals [i1, j1], [i2, j2], ..., [it, jt] such that:

– [ix, jx] ⊂c [i, j]

– j1 is minimum,

– i2 > j1 + 1, i3 > j2 + 1, ..., it > jt−1 + 1

• Cut [i, j] at j1, j2, ..., jt producing t + 1 sub-intervals

In the algorithm above, each cut is unavoidable and taken as late as possible; therefore, this is the minimum number
of sub-divisions to remove all conflicts of [i, j] with [i′, j′], [i′, j′] ⊂c [i, j].

Now we come back to the the concern of not creating new conflicts. It seems that this is quite impossible because it
is very conceivable that the small sub-divisions will be in conflict with other intervals. Although this is true, any new
conflict is part of a previously existing conflict that must be avoided anyway. The following claim (almost) proves that
there is no need to worry about the sub-divisions.

Assume two sub-divisions of the original intervals [i, j] and [k, l] are in conflict. Then either [i, j] or [k, l] did not
resolve all conflicts with original intervals.

Proof (almost): By picture. The middle interval (original) must exist for the first sub-division to occur (by our
algorithm above). Therefore, if the first sub-division is in conflict with the second sub-division, so is the middle original
interval.

j

k

l

i

original intervaloriginal interval

Figure 4: Almost a proof

We say that the above is almost a proof because the argument does not hold for the last sub-division of an interval.
If in the figure above, the sub-division is the last sub-division of [i, j], then it is the remainder of [i, j] resulting from the
last cut, and was not produced as a consequence of the existence of an original interval. In this case, the sub-division
could in deed be in conflict with others. However, this can be resolved.
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Fixing the last sub-division:

Consider the interval [a, b] such that [a, b] ⊂c [i, j] and a is maximum such that a ≥ it (it could be [it, jt] itself). Then
fix the last sub-division to be [a, j]. Then we are back to the same argument because if [a, j] is in conflict with some
sub-division, so is the origial interval [a, b]. Note that this process does not change the number of sub-divisions and by
the choice of [a, b] does not create any additional conflicts. This is illustrated in Figure 5 below:
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Figure 5: Fixing the last sub-division
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