
Saad Mneimneh

Computat onal Biology

Lecture 13

Saad Mneimneh

Physical Mapping

A physical map of a DNA tells the location of
precisely defined sequences along the molecule.

– Restriction mapping: mapping of restriction sites of a
cutting enzyme based on lengths of fragments

• Double Digest Problem DDP
• Partial Digest Problem PDP

– Hybridization mapping: mapping clones based on
hybridization data with probes

• Non-unique probes
• Unique probes

Saad Mneimneh

Hybridization Mapping

• Cut several copies of the DNA into overlapping
fragments, called clones in this context.

• Construct a set of probes.

• For each clone and probe, determine whether
they hybridize.

• From the hybridization data, find an overlap of
the clones on the DNA.

Saad Mneimneh

The problem
• Given a hybridization matrix D, find the

overlap of clones on the DNA
(which overlap is the one?)

• Lander-Waterman model
– Equal length clones at independent

random positions
– Probes placed according to independent

Poisson processes
– Given D, find most likely overlap of

clones

• Most likely overlap ∼ minimize number
of occurrences of probes needed to
explain D [Alizadeh 1995].

1
1
1

1
1

1

1
1
1

1
1
1

1
1
1

1
1 1

1
1
1

1
1
1
1
1
1

1
2
3
4
5
6
7
8
9

1
1

1
1
1

A B C D E F G

probes

clones

Saad Mneimneh

Covering String
(explains data)

probes

clones

each clone hybridizes
with a set of probes

Find a string of probes that can explain the data: a covering string

Saad Mneimneh

Shortest Covering String

• A clone C is covered by a string s if s has a
substring containing only the probes of C (order
and multiplicity ignored).

• Given D, find the shortest covering string
– Non-unique probes (NP-hard)
– Unique probe (polynomial)

Saad Mneimneh

Non-unique probes

• Non-unique probes � a probe can occur in more than
one place along the DNA.

• Non-unique probes are easy to generate.

• Finding the shortest covering string is NP-hard with
non-unique probes.

• Finding the shortest covering string assuming the clones
are covered in a specific order (of their left end points)
has a polynomial time algorithm.

Saad Mneimneh

Shortest Covering String
(reformulation)

• Let π be a permutation of clones.

• Let sπ be a shortest covering string that
covers the clones in the order given by π.

• Shortest covering string = minπ sπ

Saad Mneimneh

Example

• C1: {B, C, E}
• C2: {A, B, C, D}
• C3: {A, B, C}
• C4: {B, C, D}

• s = A B A C B A C D B C E
covers the clones in the order given by the
permutation {3, 2, 4, 1}

Saad Mneimneh

How ?

Heuristic algorithm
(local minimum)

• Start with an arbitrary permutation of clones
π = π1…πn.

• Let length = ∞

• Solve for the shortest covering string sπ in polynomial time

• let s = sπ

• While (|s| < length)
– length = |s|
– Compute a set of neighbor permutations of π (polynomial number)
– For each neighbor π’ find sπ’ in polynomial time
– Let s be the shortest among these

Saad Mneimneh

Assumptions

• Clones occur in the order (of their left end
points) given by a permutation π.

• Motivated by the Lander-Waterman model, all
clones have the same length. We will therefore
assume that:

No clone properly contains another

• We will also assume that the DNA is completely
covered by clones; therefore, we have no gaps.

Saad Mneimneh

Intervals
• Consider the clones in order C1 … Cn

• An overlap of the clones defines intervals marked by their end points
(no gaps).

• [i,j]: clones from Ci to Cj overlap.

[1,1][1,2][1,3][2,3][2,4][2,5][3,5][3,6][3,7][4,7][5,7][6,7][7,7] [7,8] [8,8][8,9][9,9]

1
2

3
4

5
6

7
8

9

Saad Mneimneh

Error-free Hybridization

• For each probe p, and each interval [i,j]:
p ∈ (i,j) => p hybridizes with all of Ci, Ci+1, …, Cj

• Therefore, we are considering probes as points.

• We cannot detect overlap smaller than probe length.

probe p

i

j

DNA

Saad Mneimneh

Conflict-free intervals

• The intervals are conflict-free
[i,j] and [i’,j’] are conflicting if i < i’ ≤ j’ < j

• conflict-free => we can sort the intervals such that the
left end points and the right end points are both sorted.
– First sort by left end points
– Then sort by right end points

conflicting

[i, j] [i’, j’]

Why ? ====>

containment

i
i’

j’
j

Saad Mneimneh

overlaps and intervals

• Every overlap of the clones C1… Cn defines a conflict-
free set of intervals (trivial).

• For every conflict-free set of intervals I, we have a
conflict-free set of intervals I’, I ⊆ I’, that defines an
overlap of the clones C1… Cn.

– Add [1,1] and [n,n] to I
– sort the intervals in I by their left end points and their right end

points
– Fill gaps with new intervals added to I

[i,j], [i,j+1]...[i,l], [i+1,l]…[k-1,l], [k,l]

Saad Mneimneh

Example

• N = 7
• I = { [4,6], [1,2] }

[1,1], [1,2], [1,3], [1,4], [1,5], [1,6], [2,6], [3,6], [4,6], [4,7], [5,7], [6,7], [7,7]

Saad Mneimneh

Example
(there are other ways)

• N = 7
• I = { [4,6], [1,2] }

[1,1], [1,2], [2,3], [3,4], [4,5], [4,6], [5,6], [6,7], [7,7]

Saad Mneimneh

An attempt
• Given the matrix D, consecutive

1’s in a column form a run.

• Consider maximal runs.

• Each run is also an interval.

• If the runs are conflict-free they
define some overlap of the clones.

• Make each interval contain its
probes.

• We end up with a covering string.

1
1
1

1
1

1

1
1
1

1
1
1

1
1
1

1
1 1

1
1
1

1
1
1
1
1
1

1
2
3
4
5
6
7
8
9

1
1

1
1
1

A B C D E F G

probes

Saad Mneimneh

Covering String

[1,2], [6,8], [2,4], [7,8], [1,1],
[3,5], [7,9], [2,3], [3,6], [3,8]

[1,1], [1,2], [2,3], [2,4], [3,5], [3,6], [3,8], [6,8], [7,8], [7,9]
C A E B C D F G A B D

Length of covering string = number of runs

1
1
1

1
1

1

1
1
1

1
1
1

1
1
1

1
1 1

1
1
1

1
1
1
1
1
1

1
2
3
4
5
6
7
8
9

1
1

1
1
1

A B C D E F G

probes

Saad Mneimneh

Is it Shortest ?

Yes… Proof: Each probe has to occur at least a number
of times equal to the number of its runs.

1

1

Ck

Ci

p

Cj 0

Cj has to start after the probe
otherwise Cj will be contained in Ci

Ck cannot be
covered by the
same probe

Ci

Cj

Ck

Saad Mneimneh

But…

• What if the runs (intervals) are
non conflict-free?

• Some intervals might be
conflicting.

• The problem reduces to
sub-dividing the set of runs into a
conflict-free set with a minimum
number of runs.

1
1
1

1
1

1

1
1
1

1
1
1
1
1
1
1

1
1

1

1
1
1
1

1
1
1
1
1
1
1

1
2
3
4
5
6
7
8
9

1
1

1
1
1

A B C D E F G

probes

Saad Mneimneh

Facts
• A set of t conflict-free runs defines a covering string of length t (we

just proved it).

• A covering string of length t defines a set of t conflict-free runs.
– Obtain an overlap of the clones C1…Cn given by the covering string.
– The overlap defines conflict-free intervals.
– Each occurrence of a probe p falls within an interval (i,j) (error-free

assumption).
– An interval [i,j] containing a probe p must be a run in column p of matrix

D, p hybridizes with Ci…Cj.
– Therefore, we find t such intervals, i.e. t conflict-free runs.

• Therefore, obtaining the shortest covering string
corresponds to finding the smallest set of conflict-free
runs.

Saad Mneimneh

Obtaining conflict-free runs

Sub-divide the runs such that:

– they are conflict-free

– We minimize the number of runs

[1,1], [1,2], [2,3], [2,4], [2,5], [3,5], [3,6], [3,7], [6,7], [7,7], [7,8], [8,8], [8,9]
C A E B G C F D AG E B AG D

1
1
1

1
1

1

1
1
1

1
1
1
1
1
1
1

1
1

1

1
1
1
1

1
1
1
1
1
1
1

1
2
3
4
5
6
7
8
9

1
1

1
1
1

A B C D E F G

probes

Saad Mneimneh

How to sub-divide runs (intervals)?

Let [i’,j’] ⊂c [i,j] mean that i < i’ ≤ j’ < j

The strategy is as follows:

– Sub-divide an interval [i,j] into the minimum number of intervals
needed to remove any conflict with [i’,j’] where [i’,j’] ⊂c [i,j]

– The sub-intervals of [i,j] must not create any additional conflicts
(huh ?!)

– Do this for every interval

– Therefore, only compare an interval [i,j] with the original set of
intervals

Saad Mneimneh

j

i

Looking at one interval [i,j]

First, let’s sub-divide [i,j] into the minimum number of
sub-intervals to remove any conflict with [i’,j’], [i’,j’] ⊂c [i,j]

Best thing is to cut
at a minimal j’ such that
[i’,j’] ⊂c [i,j].

cannot avoid a
cut in this region

Saad Mneimneh

Sub-dividing [i,j]

• Find a maximum number of original intervals
[i1,j1], [i2,j2], …, [it, jt] such that:
– [ix, jx] ⊂c [i,j]
– j1 is minimum,

– i2 > j1+1, i3 > j2+1, …, it > jt-1+1

• Cut [i,j] at j1, j2, …, jt producing t+1 sub-intervals

• Each cut is unavoidable and taken as late as possible =>
this is the minimum number of sub-divisions to remove
all conflicts with [i’,j’], [i’,j’] ⊂c [i,j]

Saad Mneimneh

Example

Sub-dividing [1,11]

to remove conflicts
with [i,j] such that

1 < i ≤ j < 11

t = 3
[2,2],
[4,5],
[7,10]

12
11
10
9
8
7
6
5
4
3
2
1 1

111

11
111
1111
1111

111
11

11
111
111

11

Saad Mneimneh

I am still here !

How can we avoid
creating a new
conflict?

12
11
10
9
8
7
6
5
4
3
2
1 1

111

11
111
1111
1111

111
11

11
111
111

11

The new conflict is
part of a previously
existing conflict that

must be avoided
anyway…

Saad Mneimneh

j

k

l

i

Let’s be formal…

• Assume two sub-divisions of [i,j] and [k,l] are
conflicting.

• Then either [i,j] or [k,l] did not resolve all
conflicts with original intervals.

original interval
What if this was
the last sub-division
of [i,j] ?

Saad Mneimneh

l

k

The last sub-division

• Consider the interval [a,b] such
that [a,b] ⊂C [i,j] and a is
maximum such that a ≥ it
(it could be [it,jt] itself).

• Then fix the last sub-interval to
be [a,j].

• Then we are back to the same
argument.

i

j

original
intervals

does not
necessarily exist

j

it

a

b

jt

Saad Mneimneh

Example

12
11
10
9
8
7
6
5
4
3
2
1 1

111

11
111
1111
1111

111
11

11
111
111

11

