

Hybridization Mapping

- Cut several copies of the DNA into overlapping fragments, called clones in this context.
- Construct a set of probes.
- For each clone and probe, determine whether they hybridize.
- From the hybridization data, find an overlap of the clones on the DNA.

Saad Mn

Non-unique probes

- Non-unique probes → a probe can occur in more than one place along the DNA.
- Non-unique probes are easy to generate.
- Finding the shortest covering string is **NP-hard** with non-unique probes.
- Finding the shortest covering string assuming the clones are covered in a specific order (of their left end points) has a polynomial time algorithm.

Shortest Covering String (reformulation)

- Let π be a permutation of clones.
- Let s_π be a shortest covering string that covers the clones in the order given by π.
- Shortest covering string = $\min_{\pi} s_{\pi}$

Example

- C₁: {B, C, E}
- C_2 : {A, B, C, D}
- C_3 : {*A*, *B*, *C*}
- C_4 : {B, C, D}
- s = A B A C B A C D B C E covers the clones in the order given by the permutation {3, 2, 4, 1}

Assumptions

- Clones occur in the order (of their left end points) given by a permutation π .
- Motivated by the Lander-Waterman model, all clones have the same length. We will therefore assume that:

No clone properly contains another

• We will also assume that the DNA is completely covered by clones; therefore, we have no gaps.

Saad Mneimneh

• We end up with a covering string.

•

probes						
А	В	С	D	Е	F	G
1		ĿĪ;				
11	1			1		
	1	1	1	11	¦ī¦	1
	1	1	<u> 1</u>		1	1
		1	1		1	11
1					11	1
1	1		1			1
1	11		1			11
			1			
0						

Facts

- A set of t conflict-free runs defines a covering string of length t (we just proved it). .
- A covering string of length *t* defines a set of *t* conflict-free runs. Obtain an overlap of the clones $C_1...C_n$ given by the covering string. The overlap defines conflict-free intervals. Each occurrence of a probe *p* falls within an interval (*i*_i) (error-free assumption).
- An interval [*i*_i] containing a probe *p* must be a run in column *p* of matrix *D*, *p* hybridizes with C_p...C_p
 Therefore, we find *t* such intervals, i.e. *t* conflict-free runs.

Saad Mnei neh

•

 Therefore, obtaining the shortest covering string corresponds to finding the smallest set of conflict-free runs.

How to sub-divide runs (intervals)?

Let $[i,j] \subset_c [i,j]$ mean that $i < i \le j < j$

The strategy is as follows:

- Sub-divide an interval [*i*,*j*] into the minimum number of intervals needed to remove any conflict with [*i*',*f*] where [*i*,*f*] ⊂_c [*i*,*j*]
- Do this for every interval
- Therefore, only compare an interval [*i*,*j*] with the original set of intervals

Saad Mne

Sub-dividing [i,j]

- Find a maximum number of original intervals
 [*i*₁, *j*₁], [*i*₂, *j*₂], ..., [*i_b*, *j_b*] such that:
 - [*i_a*, *j_b*] ⊂_c [*i_b*]
 - $= [i_x, j_x] \subseteq_c [i, j]$ = j_1 is minimum,
 - $-i_2 > j_1+1, i_3 > j_2+1, \dots, i_t > j_{t-1}+1$
- Cut [i,j] at $j_1, j_2, ..., j_t$ producing t+1 sub-intervals
- Each cut is unavoidable and taken as late as possible => this is the minimum number of sub-divisions to remove all conflicts with [*i*,*j*], [*i*,*j*] ⊂_c [*i*,*j*]

Saad Mneimneh

