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We have seen how mapping by hybridization can be abstracted into the shortest covering string problem SCS which is
NP-hard when the probes are non unique. However, we showed that even when the probes are non unique, a polynomial
time algorithm exists for computing a shortest covering string for a given permutation π of the clones. This polynomial
time algorithm was used to develop a heuristic algorithm for the general SCS problem with non unique probes. Now we
look at the SCS problem when probes are unique and we show that it can be solved in polynomial time.

SCS with unique probes

As for the case of non unique probes, we will assume that we have no hybridization errors. Under this assumption,
(1) the length of the shortest covering string in equal to the number of probes (assume a probe hybridizes with at least
one clone), and (2) the shortest ocvering string is therefore a permutation of the probes. Both (1) and (2) imply that
the matrix D satisfy the consecutive 1’s property C1P :

C1P : There exists a permutation of the columns of D (probes), such that all 1s in each row occur in consecutive
positions.

Note that in the presence of hybridization errors, the C1P property might not be satisfied, below is an example where
we cannot permute the columns of D to make it C1P :
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Figure 1: 3 possible permutations up to reversal 3!/2 = 6/2 = 3

Therefore, assuming no hybridization errors, the shortest covering string reduces to finding a permutation of the
columns of D to make it C1P . We will not try to explicitly construct the C1P permutation, but we will find it by
repeatedly identifying neighboring probes.

First, we list our assumptions. Let Ci be the set of clones that probe i hybridizes with (note that this is different
from our previous notation where Ci denoted a clone). We have four assumptions:

• No hybridization errors: C1P permutation exists

• Non-inclusion: No clone X contains another clone Y (i.e. the set of probes hybridized with X does not strictly
contain the set of probes hybridized with Y )

• Connectedness (no gaps): for every partition of the set of probes into two non-empty sets A and B, there exist
probes i ∈ A and j ∈ B such that Ci ∩ Cj 6= ∅

• Distinguishability: Ci 6= Cj for i 6= j

If connectedness is not satisfied, we can treat each connected subset of probes separately. If distinguishibility is not
satisfied, we can treat undistinguishable probes as one. In non-inclusion is not satisfied, we can remove the clones that
are completely contained in other clones. These can then be added by possibly performing some local permutations on
the probes (we do not look at this detail here).

Now we reformulate the C1P property in terms of the Ci’s: Let 1...m be the correct order of the probes (i.e. the C1P
permutation).

Lemma: If 1 ≤ i < j < k ≤ m then Ci ∩ Ck ⊆ Ci ∩ Cj and Ci ∩ Ck ⊆ Cj ∩ Ck.

Proof: If a clone c ∈ Ci ∩Ck then c ∈ Cj since the unique probe j lies between i and k and we have no hybridization
errors; therefore c ∈ Ci ∩ Cj and c ∈ Cj ∩ Ck.

Now we define the notion of a closest probe j to a given probe i.
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For a given probe i and a set of probes P , a probe j ∈ P is closest to i iff no other probe k ∈ P lies between i and j.

Note that a given probe i can have up to two closest probes in P (either from left or from right). We will show that:

Theorem: Given a set of probes P and a probe i such that Ci ∩ Cj 6= ∅ for some j ∈ P , probe j ∈ P is closest to
probe i if j has a minimum |Cj | that maximizes |Ci ∩ Cj |.

Proof: If j is the only probe in P that maximizes |Ci ∩Cj |, then by the lemma above, no probe k ∈ P can lie between
i and j since otherwise Ci ∩ Cj ⊆ Ci ∩ Ck ⇒ |Ci ∩ Cj | ≤ |Ci ∩ Ck| and j is not the only probe in P that maximizes
|Ci ∩ Cj |. Therefore, j ∈ P is closest to i. If |Ci ∩ Cj | is maximized for two (or more) probes, then pick probe j with
with minimum |Cj |. We will prove that j is closest by contradiction. Assume the opposite, i.e. j is not closest to i.
Therefore, another probe k is closest to i. By the condition of the theorem, the maximum |Ci ∩ Cj | = |Ci ∩ Ck| 6= 0.
The situation is depicted below without loss of generality (also consider one side of i without loss of generality).
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Figure 2: Assume for the sake of contradiction that j is not closest

By the distinguishibility assumption, Cj 6= Ck; therefore, there must be a clone c that

• hybridizes with j but not with k, or

• hybridizes with k but not with j

In the latter case, c can hybridize neither with i (otherwise |Ci ∩ Ck| > |Ci ∩ Cj |) nor with j, and hence will be
contained in some other clone, which cannot be true by the non-inclusion assumption. Therefore, the former case is
true and |Ck| < |Cj |, a contradiction to the choice of j.

The theorem above suggests an algorithm for determining the correct order of probes (i.e. the C1P permutation).
We maintain a correct partial permutation π of the probes, initially the permutation consists of an arbitrary probe. Let
P be the set of probes that are not part of the permutation. Consider the first and last probes of the permutation πfirst

and πlast. By the connectedness assumption, there must be a probe j ∈ P such that Cπfirst
∩Cj 6= ∅ or Cπlast

∩Cj 6= 0.
Therefore, if Cπlast

∩ Cj 6= ∅ for some j ∈ P , we find the closest j ∈ P to πlast by the method of the theorem above,
i.e. the j with the minimum |Cj | that maximizes |Cπlast

∩Cj |. Once found, we know that no other probe k ∈ P can lie
between j and πlast. This means that j either follows πlast (closest from right), or preceeds πfirst (closest from left and
partial permutation built so far is correct). To choose among the two options, we let P ′ = {πfirst, πlast} and find the
closest k ∈ P ′ to j, i.e. find the k ∈ P ′ with the minimum |Ck| that maximizes |Cj ∩ Ck| and place j accordingly.

On the other hand, if Cπlast
∩ Cj = ∅ for all j ∈ P , reverse the permutation and continue (making πfirst the last

probe of the permutation).

Algorithm

π = πfirst = πlast = i for any probe i
P = { all probes expect i}
repeat

if Cπlast
∩ Cj = ∅ for all j ∈ P

then reverse π
choose j ∈ P with minimum |Cj | that maximizes |Cπlast

∩ Cj |
choose k ∈ {πfirst, πlast} with minimum |Ck| that maximizes |Cj ∩ Ck|
if k = πlast

then π = π, j
else π = j, π
P = P − {j}

until P = ∅
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