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Physical Mapping

A physical map of a DNA tells the location of
precisely defined sequences along the molecule.

— Restriction mapping: mapping of restriction sites of a
cutting enzyme based on lengths of fragments
« Double Digest Problem DDP
« Partial Digest Problem PDP

— Hybridization mapping: mapping clones based on
hybridization data with probes
« Non-unique probes

’ « Unique probes
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Unique probes

Unique probes - each probe occurs only once along the
DNA.

Unique probes are not easy to generate, they are usually

long probes.

— example: STS (Sequence Tag Site) probe is extracted from the
DNA itself, often from endpoint of clone, and is sufficiently long
that is unlikely to occur a second time on the DNA

Finding the shortest covering string is this case can be
done in polynomial time.
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Shortest covering string

Assuming no hybridization errors

— (1) The length of the shortest covering string is equal
to the number of probes.

— (2) The shortest covering string is now given by a
special permutation of the probes.

— (1) + (2) => consecutive ones property C1P :

there exists a permutation of the columns of D,
such that 1's in each row occur in consecutive positions.
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Example of error

i j ok
e Assume 1 11
— unique probes 101

— Obtained the following D 11

« We cannot permute the columns to make D satisfy C1P.
i ik

ik i

k
1] [1]1] ]
[ 1]z} [ [1]1]

(3 possible permutations up to reversal 3!/2 = 6/2 = 3)

* We must have a hybridization error!
— possible shortest covering string in this case: ijki
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Finding C1P permutation

* We will assume no hybridization errors

« The shortest covering string problem reduces to
finding a permutation of the columns of D to put
D in C1P form.

« We will not try to explicitly construct the C1P
permutation, but we will find it by repeatedly
identifying neighboring probes.
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Assumption 1

No hybridization errors

(i.e. C1P permutation exists)
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Assumption 2

Non-inclusion: No clone X contains another
clone Y.

cannot have
this situation

DNA

Assumption 3

Connectedness: for every partition of the set of
probes into two non-empty sets A and B, there
exist probes i 0 A and j O B such that
CnC#o

cannot have
this situation

=m o DNA

‘Saad Mneimne! h




Assumption 4
Distinguishability: C; # C, for i #j

cannot have
this situation

DNA
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C1P reformulation
(Lemma)

Let 1...m be the correct ordering of probes and
l<i<j<ksm. Then

CnCOCnCjand

Assumption 1:

Ci N Ck a Cj N Ck if clone c O C; n C,, then
_cOCnC
.~ e0gng,
C '
Proof:
o =)
i ] k
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Closest probe

« Given a probe i and a set of probes P such that
Cin C;# pfor some j O P, aclosest probe kin P to i is
such that there is no probe in P between i and k.

« |If there is only one probe k O P such that |C; n C,] is
maximized, then there can be no probe between i and k,
and k must closest (either from left or from right).

* What if we have a number of probes in P such that
|IC; n Cy| is maximized? In this case, the probe k with a
minimum |C,] is closest (either from left or from right).
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Closest probe (cont.)

Consider one side of i (say right) and assume |C; n C| =|C; n C,| #0
(this also means that C; n C; = C; n C,no errors)

C; and C, must be different (distinguishability)

There must a clone that hybridizes with k but not with j, because we cannot
have a clone that hybridizes with j but not with k, otherwise it will be
contained in another clone, a contradiction (non-inclusion)

Therefore, |G| < |Cy
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Strict partial order relation
(closer)

j closer than k to i iff
ICin CI>ICin Cy
or

ICin C| =IC;in C[#£0and [Cj| < |Cy
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Algorithm

The algorithm maintains an ordered set 1= Tg,... i, denoting a correct
sub-sequence of consecutive probes.

compute |Cj| and |C; n C|| for all probes i and j

TS Ty = Thpg = i for any i
P = { all probes except i }
repeat
if Cm n Cy= gforall jOP [no more probes to the right of Tj,q]
then reverse 1
choose j O P with min |C|| that maximizes |Cr,,, n C|
choose k O { m,,, ..} with min |C,| that maximizes |C; n C,|
if k=,
then m=1j
else m=j,
P=P-{j}
until P =@
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DNA Sequencing
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DNA sequencing

To sequence a DNA is to obtain the string of bases that it contains.

It is impossible to sequence the whole DNA molecule directly.

We may however obtain a piece of a certain length cut at random

and sequence it. This is called a fragment.

By using cloning and cutting techniques we can obtain a large

number of sequenced fragments.

The goal is to reconstruct the DNA molecule based on the fragments
overlap (now the overlap is determined by the explicit sequences).
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Ideal case

We know the length of the DNA (e.g. = 10 bases)

There are no errors in sequencing the fragments

ACCGT - - ACCGT - -
CGTGC - CGTeC
TTAC TTAG - - - -

TACCGT - TACCGT- -
Align sequences ignoring end gaps

Find consensus by majority voting
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Insertion errors

ACCGT -- ACC- GT- -
CAGTGC ----CAGTGC
TTAC TTAG -----
TACCGT - TACC- GT- -
TTACC- GTGC

Insertion of A in the second fragment
Gap in consensus will be discarded
In this example, it still works because of majority voting
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Deletion error

ACCGT - - ACCGT- -
CGTGC ----CGreC
TTAC TTAG. - - --
TACCGT - TAG GT- -
TTACCGTGC

The first C was deleted from 4t fragment
Consensus still works

Chimeric fragment

Two disjoint fragments join to form one fragment
that is not originally part of the DNA

ACCGT - - ACCGT- -
CGTGC ----CGIcC
TTAC TTAG - ---
TACCGT - TACCGT- -
TTATGC TTACCGTGC

TTA--- TGC
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Unknown orientation

which strand a particular fragment belongs to?

CACGT — CACGT A

ACGT — - ACGT /reverse compliment

ACTACG — --CGTAGT

GTACT — - AGTAC

ACTGA — e ACTGA

CTA TR CTGA
CACGTAGTACTGA

We have 2" possibilities

Repeats
— 1 1 [
Al x I8 [_x lcl x b
— 1 1 [
Al x JTcl x I8 [ x b

Repeats
R — ] |
Al x |8 v Jcl x Jol vy JE
| ] e R —
Al x |op_ v Jcl x |8l vy |E




Inverted repeats

CG. TC
L x | L x |
reve'rse‘mferr_re‘rﬂ'iﬁTeﬂed
Lox ] L x ]

Inverted repeat
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Lack of coverage

uncovered
area

| —

contig contig

We have more than one contig
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DNA sequencing

¢ Shortest common superstring SCS

— “An elegant theoretical abstraction,
but fundamentally flawed” — R. Karp

Given a set of fragments F,
Find the shortest string s that contains
every f O F as a substring

* This is NP-hard

* The SCS might not be what we really want
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Bad example
(repeats)

Solving SCS

We are going to consider a Hamiltonian
path approach to solving the SCS problem

Overlap graph
« Consider the complete directed weighted graph

G = (V, E), called the overlap graph

— V =F (each fragment is a vertex)
— (u,v) O E with weight -t iff t is the length of the

maximal suffix of u that is a prefix of v

* We allow self loops and zero weight edges




Example

TACGA

@\l ACCC

a=TACGA

b=ACCC

c = CTAAAG

d=GAGC

CTAAAG -1
GACA

0 weight edges
not shown
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A path defines a superstring

« Every simple path P in the overlap graph
involving a set of vertices (fragments) A defines
a superstring s(P) for the set A.

« Therefore, a Hamiltonian path in the overlap
graph defines a superstring for the set of
fragments F.

« A Hamiltonian path must exist because the
graph is complete (how many do we have?).

GACA CTAAAG

0 weight edges s(P): TACGACACCCTAAAG
not shown
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Does a superstring define a path?

» We have seen that every Hamiltonian path corresponds
to a superstring.

« Is the converse true?

— No: A superstring can contain arbitrary characters that are not
present in any fragments

» Does a shortest superstring correspond to a
Hamiltonian path?

— Yes: if F is substring-free, i.e. no fragment in F is contained
in another
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Example

The shortest superstring is

AGCT

There is no Hamiltonian path
P, such that s(P) = AGCT
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Subtring-free collection F

Let F be a substring free set, then for every shortest
superstring s, there is a Hamiltonian path P, such that
s(P) =s.

Proof: assume the fragments appear in s as follows
(no gaps and no one can be contained in another)

this must be the

max overlap \ b

between a_\ - s

aandb

ol e 4, t, 0

SR SN N
Hampath: a b ¢ d

eiC oee
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Non substring-free F

If F is not substring-free, then we can remove all
fragments from F that are substrings of other
fragments

We end up with a set F’
But any superstring of F’ is a superstring of F

Therefore, we can use F’
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Length of string
v.S. weight of path

Let P be a Hamiltonian path.

Let w(P) be the weight of P.

Let|IFIl = Z,olal

Then |s(P)| = ||F|| + w(P) [proof is simple]

Therefore, the shortest common superstring corresponds
to the Hamiltonian path with minimum weight
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Proof

Let P be a Hamiltonian path with minimum weight
we need to show that s(P) is a shortest superstring
— Let s be a shortest superstring with |s| < |s(P)|

— Then there is a Hamiltonian path P’ such that s = s(P’)

= Is(P)I = [IF|l +w(P’) < |s(P)| = |[F|| + w(P)

— Therefore, w(P’) < w(P), contradiction
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Hamiltonian path approach

¢ Finding a minimum weight Hamiltonian path is
NP-hard (you can reduce HAMPATH to it)

¢ Unfortunately, there is no “better” approach to
solve SCS, because SCS itself is NP-hard

¢ Let's consider a greedy algorithm for finding a
Hamiltonian path
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Greedy algorithm

* Greedy:

— start with an empty path

— repeatedly add the least weighted available edge until you get a
Hamiltonian path

» Every time we add an edge (u,v), we need to check:

— (u,v) does not create a cycle with the previously added edges
— u has no previously added outgoing edge

— v has no previously added incoming edge
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Greedy algorithm

sort edges by their weight: e, e,, ...eg,

forallvOVv

in(v) €0

out(v) €0
Heo To build the graph: trivially O(||F|[2)
ie1 (could be done optimally in

2 # "
while |H| < |F| - 1 O(n? + [|F|]) using suffix trees)

(uyv) € e s P
if out(u) i 0and in(v) = 0 To run the algorithm: O(n2logn)
then
if H O e; does not contain a cycle [disjoint set data structure]
Hé€HOg
out(u) € 1
in(v) €1

ici+l
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ATGC

Example

Greedy algorithm will choose:
ATGC
TGCAT
GCC
ATGCATGCC

Optimal is:
TGCAT
ATGC
GCC
TGCATGCC
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