o
Computat 4 onal Biology

Lecture 14

‘Saad Mneimneh

Physical Mapping

A physical map of a DNA tells the location of
precisely defined sequences along the molecule.

— Restriction mapping: mapping of restriction sites of a
cutting enzyme based on lengths of fragments
« Double Digest Problem DDP
« Partial Digest Problem PDP

— Hybridization mapping: mapping clones based on
hybridization data with probes
« Non-unique probes

’ « Unique probes

‘Saad Mneimneh

Unique probes

Unique probes - each probe occurs only once along the
DNA.

Unique probes are not easy to generate, they are usually

long probes.

— example: STS (Sequence Tag Site) probe is extracted from the
DNA itself, often from endpoint of clone, and is sufficiently long
that is unlikely to occur a second time on the DNA

Finding the shortest covering string is this case can be
done in polynomial time.

‘Saad Mneimneh

Shortest covering string

Assuming no hybridization errors

— (1) The length of the shortest covering string is equal
to the number of probes.

— (2) The shortest covering string is now given by a
special permutation of the probes.

— (1) + (2) => consecutive ones property C1P :

there exists a permutation of the columns of D,
such that 1's in each row occur in consecutive positions.

‘Saad Mneimneh

Example of error

i j ok
e Assume 1 11
— unique probes 101

— Obtained the following D 11

« We cannot permute the columns to make D satisfy C1P.
i ik

ik i

k
1] [1]1]]
[1]z} [[1]1]

(3 possible permutations up to reversal 3!/2 = 6/2 = 3)

* We must have a hybridization error!
— possible shortest covering string in this case: ijki

‘Saad Mneimneh

Finding C1P permutation

* We will assume no hybridization errors

« The shortest covering string problem reduces to
finding a permutation of the columns of D to put
D in C1P form.

« We will not try to explicitly construct the C1P
permutation, but we will find it by repeatedly
identifying neighboring probes.

‘Saad Mneimneh

Assumption 1

No hybridization errors

(i.e. C1P permutation exists)

‘Saad Mneimne! h

Assumption 2

Non-inclusion: No clone X contains another
clone Y.

cannot have
this situation

DNA

Assumption 3

Connectedness: for every partition of the set of
probes into two non-empty sets A and B, there
exist probes i 0 A and j O B such that
CnC#o

cannot have
this situation

=m o DNA

‘Saad Mneimne! h

Assumption 4
Distinguishability: C; # C, for i #j

cannot have
this situation

DNA

‘Saad Mneimneh

C1P reformulation
(Lemma)

Let 1...m be the correct ordering of probes and
l<i<j<ksm. Then

CnCOCnCjand

Assumption 1:

Ci N Ck a Cj N Ck if clone c O C; n C,, then
_cOCnC
.~ e0gng,
C '
Proof:
o =)
i] k

‘Saad Mneimneh

Closest probe

« Given a probe i and a set of probes P such that
Cin C;# pfor some j O P, aclosest probe kin P to i is
such that there is no probe in P between i and k.

« |If there is only one probe k O P such that |C; n C,] is
maximized, then there can be no probe between i and k,
and k must closest (either from left or from right).

* What if we have a number of probes in P such that
|IC; n Cy| is maximized? In this case, the probe k with a
minimum |C,] is closest (either from left or from right).

‘Saad Mneimneh

Closest probe (cont.)

Consider one side of i (say right) and assume |C; n C| =|C; n C,| #0
(this also means that C; n C; = C; n C,no errors)

C; and C, must be different (distinguishability)

There must a clone that hybridizes with k but not with j, because we cannot
have a clone that hybridizes with j but not with k, otherwise it will be
contained in another clone, a contradiction (non-inclusion)

Therefore, |G| < |Cy

‘Saad Mneimneh

Strict partial order relation
(closer)

j closer than k to i iff
ICin CI>ICin Cy
or

ICin C| =IC;in C[#£0and [Cj| < |Cy

‘Saad Mneimneh

Algorithm

The algorithm maintains an ordered set 1= Tg,... i, denoting a correct
sub-sequence of consecutive probes.

compute |Cj| and |C; n C|| for all probes i and j

TS Ty = Thpg = i for any i
P = { all probes except i }
repeat
if Cm n Cy= gforall jOP [no more probes to the right of Tj,q]
then reverse 1
choose j O P with min |C|| that maximizes |Cr,,, n C|
choose k O { m,,, ..} with min |C,| that maximizes |C; n C,|
if k=,
then m=1j
else m=j,
P=P-{j}
until P =@

‘Saad Mneimneh

DNA Sequencing

‘Saad Mneimneh

DNA sequencing

To sequence a DNA is to obtain the string of bases that it contains.

It is impossible to sequence the whole DNA molecule directly.

We may however obtain a piece of a certain length cut at random

and sequence it. This is called a fragment.

By using cloning and cutting techniques we can obtain a large

number of sequenced fragments.

The goal is to reconstruct the DNA molecule based on the fragments
overlap (now the overlap is determined by the explicit sequences).

‘Saad Mneimneh

Ideal case

We know the length of the DNA (e.g. = 10 bases)

There are no errors in sequencing the fragments

ACCGT - - ACCGT - -
CGTGC - CGTeC
TTAC TTAG - - - -

TACCGT - TACCGT- -
Align sequences ignoring end gaps

Find consensus by majority voting

‘Saad Mneimneh

Insertion errors

ACCGT -- ACC- GT- -
CAGTGC ----CAGTGC
TTAC TTAG -----
TACCGT - TACC- GT- -
TTACC- GTGC

Insertion of A in the second fragment
Gap in consensus will be discarded
In this example, it still works because of majority voting

‘Saad Mneimne! h

Deletion error

ACCGT - - ACCGT- -
CGTGC ----CGreC
TTAC TTAG. - - --
TACCGT - TAG GT- -
TTACCGTGC

The first C was deleted from 4t fragment
Consensus still works

Chimeric fragment

Two disjoint fragments join to form one fragment
that is not originally part of the DNA

ACCGT - - ACCGT- -
CGTGC ----CGIcC
TTAC TTAG - ---
TACCGT - TACCGT- -
TTATGC TTACCGTGC

TTA--- TGC

‘Saad Mneimne! h

Unknown orientation

which strand a particular fragment belongs to?

CACGT — CACGT A

ACGT — - ACGT /reverse compliment

ACTACG — --CGTAGT

GTACT — - AGTAC

ACTGA — e ACTGA

CTA TR CTGA
CACGTAGTACTGA

We have 2" possibilities

Repeats
— 1 1 [
Al x I8 [_x lcl x b
— 1 1 [
Al x JTcl x I8 [x b

Repeats
R —] |
Al x |8 v Jcl x Jol vy JE
|] e R —
Al x |op_ v Jcl x |8l vy |E

Inverted repeats

CG. TC
L x | L x |
reve'rse‘mferr_re‘rﬂ'iﬁTeﬂed
Lox] L x]

Inverted repeat

‘Saad Mneimneh

Lack of coverage

uncovered
area

| —

contig contig

We have more than one contig

‘Saad Mneimneh

DNA sequencing

¢ Shortest common superstring SCS

— “An elegant theoretical abstraction,
but fundamentally flawed” — R. Karp

Given a set of fragments F,
Find the shortest string s that contains
every f O F as a substring

* This is NP-hard

* The SCS might not be what we really want

‘Saad Mneimneh

Bad example
(repeats)

Solving SCS

We are going to consider a Hamiltonian
path approach to solving the SCS problem

Overlap graph
« Consider the complete directed weighted graph

G = (V, E), called the overlap graph

— V =F (each fragment is a vertex)
— (u,v) O E with weight -t iff t is the length of the

maximal suffix of u that is a prefix of v

* We allow self loops and zero weight edges

Example

TACGA

@\l ACCC

a=TACGA

b=ACCC

c = CTAAAG

d=GAGC

CTAAAG -1
GACA

0 weight edges
not shown

‘Saad Mneimne! h

A path defines a superstring

« Every simple path P in the overlap graph
involving a set of vertices (fragments) A defines
a superstring s(P) for the set A.

« Therefore, a Hamiltonian path in the overlap
graph defines a superstring for the set of
fragments F.

« A Hamiltonian path must exist because the
graph is complete (how many do we have?).

GACA CTAAAG

0 weight edges s(P): TACGACACCCTAAAG
not shown

‘Saad Mneimne! h

Does a superstring define a path?

» We have seen that every Hamiltonian path corresponds
to a superstring.

« Is the converse true?

— No: A superstring can contain arbitrary characters that are not
present in any fragments

» Does a shortest superstring correspond to a
Hamiltonian path?

— Yes: if F is substring-free, i.e. no fragment in F is contained
in another

‘Saad Mneimneh

Example

The shortest superstring is

AGCT

There is no Hamiltonian path
P, such that s(P) = AGCT

‘Saad Mneimneh

Subtring-free collection F

Let F be a substring free set, then for every shortest
superstring s, there is a Hamiltonian path P, such that
s(P) =s.

Proof: assume the fragments appear in s as follows
(no gaps and no one can be contained in another)

this must be the

max overlap \ b

between a_\ - s

aandb

ol e 4, t, 0

SR SN N
Hampath: a b ¢ d

eiC oee

‘Saad Mneimneh

Non substring-free F

If F is not substring-free, then we can remove all
fragments from F that are substrings of other
fragments

We end up with a set F’
But any superstring of F’ is a superstring of F

Therefore, we can use F’

‘Saad Mneimneh

Length of string
v.S. weight of path

Let P be a Hamiltonian path.

Let w(P) be the weight of P.

Let|IFIl = Z,olal

Then |s(P)| = ||F|| + w(P) [proof is simple]

Therefore, the shortest common superstring corresponds
to the Hamiltonian path with minimum weight

‘Saad Mneimneh

Proof

Let P be a Hamiltonian path with minimum weight
we need to show that s(P) is a shortest superstring
— Let s be a shortest superstring with |s| < |s(P)|

— Then there is a Hamiltonian path P’ such that s = s(P’)

= Is(P)I = [IF|l +w(P’) < |s(P)| = |[F|| + w(P)

— Therefore, w(P’) < w(P), contradiction

‘Saad Mneimneh

Hamiltonian path approach

¢ Finding a minimum weight Hamiltonian path is
NP-hard (you can reduce HAMPATH to it)

¢ Unfortunately, there is no “better” approach to
solve SCS, because SCS itself is NP-hard

¢ Let's consider a greedy algorithm for finding a
Hamiltonian path

‘Saad Mneimneh

Greedy algorithm

* Greedy:

— start with an empty path

— repeatedly add the least weighted available edge until you get a
Hamiltonian path

» Every time we add an edge (u,v), we need to check:

— (u,v) does not create a cycle with the previously added edges
— u has no previously added outgoing edge

— v has no previously added incoming edge

‘Saad Mneimneh

Greedy algorithm

sort edges by their weight: e, e,, ...eg,

forallvOVv

in(v) €0

out(v) €0
Heo To build the graph: trivially O(||F|[2)
ie1 (could be done optimally in

2 # "
while |H| < |F| - 1 O(n? + [|F|]) using suffix trees)

(uyv) € e s P
if out(u) i 0and in(v) = 0 To run the algorithm: O(n2logn)
then
if H O e; does not contain a cycle [disjoint set data structure]
Hé€HOg
out(u) € 1
in(v) €1

ici+l

‘Saad Mneimneh

ATGC

Example

Greedy algorithm will choose:
ATGC
TGCAT
GCC
ATGCATGCC

Optimal is:
TGCAT
ATGC
GCC
TGCATGCC

‘Saad Mneimneh

