
Saad Mneimneh

Computat onal Biology

Lecture 14

Saad Mneimneh

Physical Mapping

A physical map of a DNA tells the location of 
precisely defined sequences along the molecule.

– Restriction mapping: mapping of restriction sites of a 
cutting enzyme based on lengths of fragments

• Double Digest Problem DDP
• Partial Digest Problem PDP

– Hybridization mapping: mapping clones based on 
hybridization data with probes

• Non-unique probes
• Unique probes

Saad Mneimneh

Unique probes

• Unique probes � each probe occurs only once along the 
DNA.

• Unique probes are not easy to generate, they are usually 
long probes.
– example: STS (Sequence Tag Site) probe is extracted from the 

DNA itself, often from endpoint of clone, and is sufficiently long 
that is unlikely to occur a second time on the DNA

• Finding the shortest covering string is this case can be 
done in polynomial time. 



Saad Mneimneh

Shortest covering string

Assuming no hybridization errors

– (1) The length of the shortest covering string is equal 
to the number of probes.

– (2) The shortest covering string is now given by a 
special permutation of the probes.

– (1) + (2) => consecutive ones property C1P : 

there exists a permutation of the columns of D,
such that 1’s in each row occur in consecutive positions.

Saad Mneimneh

Example of error

• Assume 
– unique probes
– Obtained the following D

• We cannot permute the columns to make D satisfy C1P.

(3 possible permutations up to reversal 3!/2 = 6/2 = 3)

• We must have a hybridization error! 
– possible shortest covering string in this case:  i j k i

1 1
1 1

1 1

i j k

1 1
1 1

1 1

i k j
1 1

1 1
1 1

j i k
1 1
1 1

1 1

i j k

Saad Mneimneh

Finding C1P permutation

• We will assume no hybridization errors

• The shortest covering string problem reduces to 
finding a permutation of the columns of D to put 
D in C1P form.

• We will not try to explicitly construct the C1P
permutation, but we will find it by repeatedly 
identifying neighboring probes.



Saad Mneimneh

Assumption 1

No hybridization errors  

(i.e. C1P permutation exists)

Saad Mneimneh

Assumption 2

Non-inclusion: No clone X contains another 
clone Y.

DNA

cannot have 
this situation

Saad Mneimneh

Assumption 3

Connectedness: for every partition of the set of 
probes into two non-empty sets A and B, there 
exist probes i ∈ A and j ∈ B such that                 
Ci ∩ Cj ≠  φ

DNA

cannot have
this situation



Saad Mneimneh

Assumption 4

Distinguishability: Ci ≠ Cj for i ≠ j

DNA

cannot have
this situation

Saad Mneimneh

C1P reformulation
(Lemma)

Let 1…m be the correct ordering of probes and 
1 ≤ i < j < k ≤ m. Then

Ci ∩ Ck ⊆ Ci ∩ Cj and

Ci ∩ Ck ⊆ Cj ∩ Ck

Proof:
i kj

Assumption 1:
if clone c ∈ Ci ∩ Ck , then

c ∈ Ci ∩ Cj
c ∈ Cj ∩ Ck

c

Saad Mneimneh

Closest probe

• Given a probe i and a set of probes P such that              
Ci ∩ Cj ≠ φ for some j ∈ P , a closest probe k in P to i is 
such that there is no probe in P between i and k.

• If there is only one probe k ∈ P such that |Ci ∩ Ck| is 
maximized, then there can be no probe between i and k, 
and k must closest (either from left or from right).

• What if we have a number of probes in P such that        
|Ci ∩ Ck| is maximized? In this case, the probe k with a 
minimum |Ck| is closest (either from left or from right).



Saad Mneimneh

Closest probe (cont.)
Consider one side of i (say right) and assume |Ci ∩ Cj| = |Ci ∩ Ck|  ≠ 0
(this also means that Ci ∩ Cj = Ci ∩ Ck no errors)

Cj and Ck must be different (distinguishability)

There must a clone that hybridizes with k but not with j, because we cannot 
have a clone that hybridizes with j but not with k, otherwise it will be 
contained in another clone, a contradiction (non-inclusion) 

Therefore, |Cj| < |Ck|

i j k

Saad Mneimneh

Strict partial order relation
(closer)

j closer than k to i iff

|Ci ∩ Cj| > |Ci ∩ Ck|

or

|Ci ∩ Cj| = |Ci ∩ Ck| ≠ 0 and |Cj| < |Ck|

Saad Mneimneh

Algorithm
The algorithm maintains an ordered set π = πfirst…πlast denoting a correct 
sub-sequence of consecutive probes. 

compute |Ci| and |Ci ∩ Cj| for all probes i and j

π = πfirst = πlast = i for any i
P = { all probes except i }
repeat

if Cπlast ∩ Cj = φ for all j ∈ P [no more probes to the right of πlast]
then reverse π       

choose j ∈ P with min |Cj| that maximizes |Cπlast ∩ Cj|
choose k ∈ { πfirst , πlast} with min |Ck| that maximizes |Cj ∩ Ck|
if k = πlast

then π = π, j
else π = j, π

P = P – { j }
until P = φ



Saad Mneimneh

DNA Sequencing

Saad Mneimneh

DNA sequencing

• To sequence a DNA is to obtain the string of bases that it contains.

• It is impossible to sequence the whole DNA molecule directly.

• We may however obtain a piece of a certain length cut at random 
and sequence it. This is called a fragment.

• By using cloning and cutting techniques we can obtain a large 
number of sequenced fragments.

• The goal is to reconstruct the DNA molecule based on the fragments 
overlap (now the overlap is determined by the explicit sequences).

Saad Mneimneh

Ideal case
• We know the length of the DNA (e.g. ≈ 10 bases)

• There are no errors in sequencing the fragments

• Align sequences ignoring end gaps

• Find consensus by majority voting

ACCGT
CGTGC
TTAC
TACCGT

--ACCGT--
----CGTGC
TTAC-----
-TACCGT--

TTACCGTGC



Saad Mneimneh

Insertion errors

Insertion of A in the second fragment
Gap in consensus will be discarded
In this example, it still works because of majority voting

ACCGT
CAGTGC
TTAC
TACCGT

--ACC-GT--
----CAGTGC
TTAC------
-TACC-GT--

TTACC-GTGC

Saad Mneimneh

Deletion error

The first C was deleted from 4th fragment
Consensus still works

ACCGT
CGTGC
TTAC
TACCGT

--ACCGT--
----CGTGC
TTAC-----
-TAC-GT--

TTACCGTGC

Saad Mneimneh

Chimeric fragment

Two disjoint fragments join to form one fragment 
that is not originally part of the DNA

ACCGT
CGTGC
TTAC
TACCGT
TTATGC

--ACCGT--
----CGTGC
TTAC-----
-TACCGT--
TTACCGTGC

TTA---TGC



Saad Mneimneh

Unknown orientation

We have 2n possibilities

CACGT
ACGT
ACTACG
GTACT
ACTGA
CTGA

CACGT
-ACGT
--CGTAGT
-----AGTAC
--------ACTGA
---------CTGA

CACGTAGTACTGA

which strand a particular fragment belongs to?

reverse compliment

Saad Mneimneh

Repeats

Repeats of the form X X X

X X XA B C D

X XA C B DX

Saad Mneimneh

Repeats

Repeats of the form X Y X Y

X Y XA B C D Y E

X Y XA D C B Y E



Saad Mneimneh

Inverted repeats

Inverted repeat

X X

X X

CGA TCG

reverse complement inverted

Saad Mneimneh

Lack of coverage

We have more than one contig

uncovered
area

contig contig

Saad Mneimneh

DNA sequencing
• Shortest common superstring SCS

– “An elegant theoretical abstraction,                            
but fundamentally flawed” – R. Karp

Given a set of fragments F, 

Find the shortest string s that contains 
every f ∈∈∈∈ F as a substring

• This is NP-hard

• The SCS might not be what we really want



Saad Mneimneh

Bad example
(repeats)

X X

X X’

Shortest common superstring will give:

Saad Mneimneh

Solving SCS

We are going to consider a Hamiltonian 
path approach to solving the SCS problem

Saad Mneimneh

Overlap graph

• Consider the complete directed weighted graph              
G = (V, E), called the overlap graph

– V = F (each fragment is a vertex)

– (u,v) ∈ E with weight -t iff t is the length of the 
maximal suffix of u that is a prefix of v

• We allow self loops and zero weight edges



Saad Mneimneh

Example

a

b

d

c

-1

-2

-1

-1

-1

TACGA

ACCC

GACA

CTAAAG

a = TACGA
b = ACCC
c = CTAAAG
d = GAGC

0 weight edges 
not shown

Saad Mneimneh

A path defines a superstring

• Every simple path P in the overlap graph 
involving a set of vertices (fragments) A defines 
a superstring s(P) for the set A.

• Therefore, a Hamiltonian path in the overlap 
graph defines a superstring for the set of 
fragments F.

• A Hamiltonian path must exist because the 
graph is complete (how many do we have?).

Saad Mneimneh

Example

a

b

d

c

-1

-2

-1

-1

-1

TACGA

ACCC

GACA

CTAAAG

P = adbc

TACGA
GACA

ACCC
CTAAAG

----------------
TACGACACCCTAAAG

a = TACGA
b = ACCC
c = CTAAAG
d = GAGC

0 weight edges 
not shown

s(P):



Saad Mneimneh

Does a superstring define a path?

• We have seen that every Hamiltonian path corresponds 
to a superstring.

• Is the converse true?

– No: A superstring can contain arbitrary characters that are not 
present in any fragments

• Does a shortest superstring correspond to a 
Hamiltonian path?

– Yes: if F is substring-free, i.e. no fragment in F is contained               
in another

Saad Mneimneh

Example

The shortest superstring is 

AGCT

There is no Hamiltonian path 
P, such that s(P) = AGCT

a

b c

AGC

CTG

0
0 0

-1

0
0

Saad Mneimneh

Subtring-free collection F

Let F be a substring free set, then for every shortest 
superstring s, there is a Hamiltonian path P, such that 
s(P) = s.

Proof: assume the fragments appear in s as follows     
(no gaps and no one can be contained in another) 

s

t1

a
b

c
d

t2
a b c d

-t1 -t2 0

etc
Ham path:

this must be the 
max overlap 
between 
a and b



Saad Mneimneh

Non substring-free F

• If F is not substring-free, then we can remove all 
fragments from F that are substrings of other 
fragments

• We end up with a set F’

• But any superstring of F’ is a superstring of F

• Therefore, we can use F’

Saad Mneimneh

Length of string 
v.s. weight of path

• Let P be a Hamiltonian path.

• Let w(P) be the weight of P.

• Let ||F|| =  Σa∈F|a|

• Then |s(P)| = ||F|| + w(P) [proof is simple]

• Therefore, the shortest common superstring corresponds 
to the Hamiltonian path with minimum weight

Saad Mneimneh

Proof

Let P be a Hamiltonian path with minimum weight

we need to show that s(P) is a shortest superstring

– Let s be a shortest superstring with |s| < |s(P)|

– Then there is a Hamiltonian path P’ such that s = s(P’)

– |s(P’)| = ||F|| + w(P’) < |s(P)| = ||F|| + w(P) 

– Therefore, w(P’) < w(P), contradiction



Saad Mneimneh

Hamiltonian path approach

• Finding a minimum weight Hamiltonian path is 
NP-hard (you can reduce HAMPATH to it)

• Unfortunately, there is no “better” approach to 
solve SCS, because SCS itself is NP-hard

• Let’s consider a greedy algorithm for finding a 
Hamiltonian path

Saad Mneimneh

Greedy algorithm
• Greedy:

– start with an empty path

– repeatedly add the least weighted available edge until you get a
Hamiltonian path

• Every time we add an edge (u,v), we need to check:

– (u,v) does not create a cycle with the previously added edges

– u has no previously added outgoing edge

– v has no previously added incoming edge

Saad Mneimneh

Greedy algorithm
sort edges by their weight: e1, e2, …e|E|
for all v ∈ V

in(v) � 0
out(v) � 0

H � φ
i � 1
while |H| < |F| – 1

(u,v) � ei
if out(u) = 0 and in(v) = 0 
then 

if H  ∪ ei does not contain a cycle  [disjoint set data structure]
H � H ∪ ei
out(u) � 1
in(v) � 1
i � i + 1

To build the graph: trivially O(||F||2)
(could be done optimally in 
O(n2 + ||F||) using suffix trees)

To run the algorithm: O(n2logn)



Saad Mneimneh

Example

Greedy algorithm will choose: 
ATGC 
TGCAT 

GCC
ATGCATGCC

Optimal is:
TGCAT

ATGC
GCC

TGCATGCC 

GCC

TGCATATGC

-2

-2

-3

0


