
Computational Biology
Lecture 15: DNA sequencing and the shortest superstring problem

Saad Mneimneh

To sequence a DNA is to obtain the sequences of bases it contains. It is almost impossible to sequence the whole
molecule directly. We may, however, obtain a fragment of a relatively small length that is cut at random from the
DNA molecule, and sequence it. By using cloning and cutting techniques we can obtain a large number of sequenced
fragments. The goal is to reconstruct the DNA molecule based on the fragments overlap.

The shortest superstring problem

A naive abstraction for the sequencing problem is the Shortest Superstring problem stated below:

Shortest Superstring Problem: Given a set of sequenced fragments F , find a shortest string s that contains every
f ∈ F as a substring.

The shortest superstring problem is:

“An elegant theoretical abstraction, but fundamentally flawed”

Richard Karp at CSB2003, Stanford.

The above statement was made in the context of illustrating how computer scientists and biologists seek different
things. When the problem of sequencing arised, theoreticians came up with the above abstraction of the shortest
superstring problem (an NP-hard one), and started to work on efficient approximation algorithms for it, while the
shortest superstring was not what biologists really wanted!

The shortest superstring does not model possible errors arising from sequencing the individual fragments. Errors
might include insertion errors where a base (or more) is wrongly present in a fragment, deletion errors where a base (or
more) is absent from a fragment, substitution errors where a base (or more) is substituted for another in a fragment,
chimeric errors where two disjoint fragments join to form a single non-existing fragment, etc... Moreover, the shortest
superstring does not model fragment orientation since the source (unknown) of a fragment can be one of the two strands
of the DNA.

Most importantly, the shortest superstring abstraction fails in the presence of repeats. Suppose that the DNA molecule
has two copies of an exact repeat and that fragments are smapled as shown below:

X X

Figure 1: Two copies of X

Note that the repeat copies are long and contain many fragments. In this case, even if the fragments are exact
substrings of the DNA (no errors) and even if we know their correct orientation, finding the shortest superstring may
not be what we want.

For instance, the following figure shows a different assembly with a shortest DNA molecule for the same set of
fragments. Because the repeat copies are identical, a superstring may contain only one copy of X, which will absorb all
fragments totally contained in any of the copies. The other copy X ′ will be shorter and will contain only the fragments
that cross the border of X.

Therefore, the shortest superstring may result in a shorter DNA and ignore all repeats.
Nevertheless, the shortest superstring is an interesting theoretical problem. It is NP-hard but approximation algo-

rithms exist. Given all its shortcomings, such algorithms are primarily of theoretical interest. But we will characterize
the shortest superstring as a Hamiltonian path in a directed graph which will motivate an efficient (polynomial time)
approach for another biological problem known as Seuqncing By Hybridization.

1

X X’

Figure 2: One copy of X, shorter DNA

Shortet superstring as Hamiltonian path

Consider the complete directed weighted graph G = (V, E), called the overlap graph, defined as follows:

• V = F (a vertex for every fragment)

• (u, v) ∈ E with a weight w(u, v) = −t iff t ≥ 0 is the length of the maximal suffix of u that is a prefix of v

Therefore, we allow self loops and zero weight edges in G.
Here’s an example:

a

b

d

c

-1

-2

-1

-1

-1

TACGA

ACCC

GACA

CTAAAG

a

b

d

c

-1

-2

-1

-1

-1

TACGA

ACCC

GACA

CTAAAG

a = TACGA
b = ACCC
c = CTAAAG
d = GAGC

0 weight edges
not shown

Figure 3: Example of overlap graph

Every simple path P in the overlap graph involving a set of vertices (fragments) A defines a superstring s(P) for the
set A, where s(P) is the string obtained by concatenating all the fragments in A in order of their appearance on P while
using the maximum overlap between any two adjacent fragments.

The following example illustrates the idea:

a

b

d

c

-1

-2

-1

-1

-1

TACGA

ACCC

GACA

CTAAAG

a

b

d

c

-1

-2

-1

-1

-1

TACGA

ACCC

GACA

CTAAAG

P = adbc

TACGA
GACA

ACCC
CTAAAG

TACGACACCCTAAAG

a = TACGA
b = ACCC
c = CTAAAG
d = GAGC

0 weight edges
not shown

s(P):

Figure 4: Superstring s(P) for a path P

Therefore, a Hamiltonian path in the overlap graph defines a superstring for the set of fragments F . Note that a
Hamiltonian path must exist because the graph is complete (in fact we have many, how many?).

Is the converse true? i.e. does a superstring define a Hamiltonian path in the overlap graph? The answer to this
question is obviously no since a superstring can contain arbitrary characters that are not present in any fragment. But a
shortest supersting cannot waste any characters. So does a shortest superstring define Hamiltonian path in the overlap
graph. The answer is affirmative if F is substring-free, i.e. no fragment in F is a (strict) substring of another. First we
show an example where F is not substring-free and the shortest superstring does not define a Hamiltonian path in the
overlap graph.

In the example of Figure 5, the shortest covering string is AGCT . However, there is no Hamiltonian path P such
that s(P) = AGCT .

2

a

b c

AGC

CTG

0
0 0

-1

0
0

a

b c

AGC

CTG

0
0 0

-1

0
0

Figure 5: Shortest covering string does not define a Hamiltonian path

Let F be a substring-free set, the for every shortest superstring s, there is a Hamiltonian path P in the overlap graph
G of F , such that s(P) = s.

Proof: The fragments appear in the shortest superstring s in some order. This order is the same order for their left
end points and for their right end points in s since no fragment can be contained in another. Moreover, there can be
no gaps in s between fragments (otherwise s would not be shortest). Without loss of generality this is illustrated in the
figure below:

s

t1

a
b

c
d

t2
a b c d

-t1 -t2 0

etc
Ham path:

this must be the
max overlap
between
a and b

Since every two adjacent fragments must share the maximum overlap in the shortest superstring, the Hamiltonian
path can be extracted from the shortest superstring as shown above.

The assumption on F begin a substring-free set is not a very constraining one since any set of fragments can be filtered
and all fragments in F that are substrings of other fragments in F can be removed to obtained a new substring-free set
F ′. The important observation here is that removing these fragments causes no harm since a superstring for F ′ is a
superstring for F and a superstring for F is a superstring for F ′. Therefore, we can always work with a substring-free
set.

Let P be a Hamiltonian path and w(P) be the weight of path P (i.e. sum of weights of the edges on that path). Let
m =

∑
f∈F |f |. Then

|s(P)| = m + w(P)

The proof of the above equality is simple, for instance refer to Figure 4 to verify it.
Now we establish a way to determine the shortest superstring for the set of fragments F by choosing the minimum

weight Hamiltonian path in the overlap graph of F .

Let P be a Hamiltonian path with minimum weight in the overlap graph of F , then s(P) is a shortest superstring for
F .

Proof: Let s be a shortest superstring with |s| < |s(P)|. Then there is a Hamiltonian path P ′ such that s = s(P ′).
Now m + w(P ′) = |s(P ′)| = |s| < |s(P)| = m + w(P) Therefore, w(P ′) < w(P), a contradiction.

The Hamiltonian path approach to solving the shortest superstring is not an efficient one because finding the minimum
weight Hamiltonian path is NP-hard (you can reduce HAMPATH to it). Unfortunately, there is no “better” approach to
solving the shortest superstring problem because it itself is an NP-hard problem. Below we consider a greedy algorithm
for finding a Hamiltonian path (not guarantted to be of minimum weight).

The greedy algorithm start with an empty path and repeatedly adds to it the least weighted available edge until it
becomes a Hamiltonian path.

3

Note that for the path to remain a valid path, every time we add an edge (u, v), we need to check for three things:

• (u, v) does not create a cycle with the previously added edges

• u has no previously added outgoing edge

• v has no previously added incoming edge

The cycle check can be done efficeintly in O(log n) time by using a disjoint set data structure. The other two checks
can be done in constant time by keeping track of the incoming and outgoing degree of each vertex.

Greedy Algorithm

sort edges by their weight: e1, e2, ..., e|E|
for all v ∈ V

in(v) ← 0
out(v) ← 0

H ← ∅
i ← 1
while |H| < |F | − 1

(u, v) ← ei

if out(u) = 0 and in(v) = 0
then if H ∪ ei does not contain a cycle

then H ← H ∪ ei

out(u) ← 1
in(v) ← 1
i ← i + 1

The cycle check can be implemented using a disjoint sets data structure as follows: Initially every vertex is in a
distinct set. When an edge (u, v) is processed, (u, v) does not create a cycle iff u and v are in separate sets. Once edge
(u, v) is added to the Hamiltonian path H, the two sets of u and v are joined together. Every disjoint sets operation
(checking whether u and v are in the same set, or joining two sets) can be done in O(log n) time where n is the number
of vertices (fragments).

Therefore, the running time of the above algorithm is O(n2 log n) since we have to first sort the O(n2) edges and
then process possibly O(n2) edges where each processing step requires O(log n) time dominated by the disjoint set data
structure.

However, the running time of O(n2 log n) assumes that we already have the overlap graph, which is not true. The
overlap graph can be trivially constructed in O(m2) by determining the overlap of every pair of fragments. Determining
the overlap of fragments a and b takes O(|a||b|) time. Determining the overlap of fragment a with all other fragments
therefore takes O(|a|m). Doing this for all fragments in F yields an O(m2) time.

Determining the overlaps can be also done in O(mn) time using a suffix tree data structure. An optimal O(n2 + m)
time bound (why is that optimal?) can be also obtained using suffix trees. (this is known as the all-pairs suffix prefix
problem). We will study suffix trees later.

Therefore, the greedy algorithm can be perfomed in O(n2 log n + m).

Sequencing by hybridization

Sequencing by hybridization is another technique used for DNA sequencing. Hybridization data is obtained for the
DNA with all possible probes of length l (for instance 4l probes). If there are no hybridization errors, the hybridization
data identifies all substrings of length l contained in the DNA sequence.

As before, the goal is to reconstruct the DNA from those substrings. The shortest superstring can be solved using a
Hamiltonian approach as as before; however, we can simplify the model a little bit.

Sequencing by hybridization is a special case of the shortest superstring problem where all fragments in F has the
same length l. In the overlap graph, we can keep only the edges with weights equal to l − 1. By construction of the
fragments in F (F is the set of all substrings of length l), we know that there must be a Hamiltonian path in this
modified overlap graph. Moreover, all the Hamiltonian paths now have the same weight of −(l − 1)(n− 1).

Therefore, the problem reduces to finding a Hamiltonian path (weight is not important). This is still an NP-complete
probelm; however, the absence of weights motivates another way to model the problem that will lead to a polynomial
time algorithm.

4

Here’s the idea: Instead of representing fragments as vertices, we will represent them as edges. Then instead of looking
for a Hamiltonian path (a path that goes through every vertex once), we will look for an Euler path (a path that goes
through every edge once). An Euler path can be found in linear time.

So we will construct the following graph G = (V, E):

• V : (l− 1) length fragments (these can be obtained from our set F by considering the first and last l− 1 characters
of each fragment)

• E: a directed edge (u, v) for each fragment in F that starts with u and ends with v

Here’s an example:

CGTGCGGCAGGCGTGTGCTGGATG CGTGCGGCAGGCGTGTGCTGGATG

GT CG

TG GC CAAT

GG

l = 3

Figure 6: Fragments as edges

By construction of the fragments, we know that the graph will have all vertices balanced except possibly for two
unbalanced vertices (each occurrence of an l − 1 fragment is shared by two l length fragments, except possibly for the
first and last one). By adding an edge between two unbalanced vertices we can make the graph balanced. Then we can
find an Euler cycle in the graph in linear time (since the graph is balanced, there is one). To construct an Euler cycle,
start fromany arbitrary edge in G and form a “random” trail by extending the already existing trail with arbitrary new
edges. The procedure ends when all edges incident to a vertex in G are used in the trail. Since every vertex in G is
balanced, every such trail starting at vertex v will end at v. If the trail traversed all edges, we are done. If not, then it
must contain a vertex w that still has a number of untraversed edges. Note that all vertices in the graph of untraversed
edges are balanced and, therefore, there exists a random trail starting at w and containing only untraversed edges. Once
can now enlarge the random trail as follows: insert a random trail of untraversed edges from w at some point in the
random trail from v where w is reached. Repeating this will eventually yield an Euler cycle. This algorithm can be
implemented in linear time. The Euler cycle will give an Euler path.

References

Setubal J., Meidanis J., Introduction to Computational Molecular Biology, Chapter 4.
Pevzner P., Computational Molecular Biology, Chapter 5.

5

