Computational Biology
Lecture 16: Genome rearrangements, sorting by reversals
Saad Mneimneh

When comparing genomes in different species, a piece of chromosome in one species can be moved or copied to a
different location in another species. Therefore, we talk about genome rearragements.

So far we used alignment algorithms to compare two sequences, possibly coming from different species, but alignments
do not capture all genome rearragements. An alignment of two sequences determines a series of shifts (in one direction)
of a sequence to bring it close to the other sequence. For instance, the following rearragement cannot be captured by
an alignment:

—) @

—

e I
Figure 1: Rearrangement

Finding all the “good” local alignments of two sequences could capture the notion of rearragements (we will see later
how to find all maximal matches between two sequences); however, these local alignments do not explain the mechanism
by which one genome is transformed into the other.

Biologically speaking, a genome is obtained from another by a number of a special kind of rearrangements called
reversals. A reversal consists of reversing a piece of the genome. After a number of reversals, the genome is transformed
into another one. Since nature chooses always the easy path, we seek the minimum number of reversals that transform
one genome into the other. Therefore, the distance between two genomes will be the minimum number of reversals
needed to transform one into the other.

Here’s an example of genome rearrangement of two related plants, alfafa and garden pea:

Alfafa
— — — ———————————————

8 7 6 5 4 3 2 1 1 10 9

—_— e —— —_—
4 3 2 8 7 1 5 6 11 10 9
Garden pea

Figure 2: Rearrangements of alfafa and pea

In the rearragement above, each block, possibly containing more than one gene, is transcribed as a unit. Blocks
with the same number are homologous. The orientation of a block denotes the strand where transcription occurs.
Homologous blocks in different species might have different orientations because of reversals. A reversal occurs on a
number of contiguous blocks and results in reversing their order and orientation. Below we show the minimum number
of reversals needed to transform alfafa into pea (a box indicated where the reversal occurs):

8 7 6 5 4 2 1 11 10 9

e e o —— — — — —

8 . 7.6 .5 4. .3 .21 1 11 10 9

— e —— P —— —— ——

i 8 2 3 4 5 1 7 6 1 10 9

Figure 3: Transforming alfafa into pea

Formalism: signed permutations

A signed permutation « over the set L = 1,2,...,n is a permutation of L such that «(i) = +a or —a, where a € L.
For example, a = (+3, -2, —1,+4, —5) is a signed permutation over L = {1,2,3,4,5}.
A reversal p = [i,j], i < j, on a signed permutation « is a signed permutation o/ such that:

o =ali,j] = (a(l), ..., ali — 1), —a(j), ..., —a(i),a(j + 1), ...,a(n))

Note how the definition of signed permutations and reversals capture the notion of a reversal of contiguous blocks in
a genome. The problem that we are trying to solve here is:

Sorting by Reversals: Given two signed permutations a and (3, find the minimum number of reversals p1, ..., p;
that will transform « into 3, i.e.

ap1pz..pr = B

We define the reversal distance dg(o) = t. (note that dg(o) = do(3)). We will ommit the subscript 8 when implicit or
not particularly important.

The reason we call the problem sorting by reversals is that 8 can be the identity permutation without any loss of
generality, i.e. § = (+1,+2,...,+n) (it is just a matter of labeling blocks in increasing order and assuming one orientation
for all blocks in the target genomes represented as (3).

Now for the problem above to make sense, it should be possible to transform « into § by using reversals only. So
it that always possible? The answer is affirmative. Counsider the following algorithm: Find j such that a(j) = G(1).
Apply a reversal [1,7] on . Now |a(1)] = |8(1)|. If a(1) = —B(1), apply a reversal [1,1]. Now «(1) = 3(1). Consider
the signed permutations o’ = («(2), ...,a(n)) and 8’ = (5(2), ..., 5(n)) and proceed in the same way. Eventually we will
transform « into 3.

Our approach to develop an algorithm for transforming « into 4 using the minimum number of reversals is the
following:

We first find a lower bound on dg(«). The first bound we find will not be tight. We then refine the bound to obtain
a new bound that is very tight.

Next, we determine a set of safe reversals. A safe reversal p has the property that dg(ap) < dg(«). In other words,
by applying a safe reversal, we decrease dg(a) and bring « closer to 3.

Finally, we develop an algorithm that applies only safe reversals until « is transformed into §. We show that an
algorithm that applies only safe reversals cannot do that for more than a number of times equal to our lower bound,
hence proving that our algorithm uses a minimum number of reversals.

Breakpoints: a first lower bound

Let « be a signed permutation. We define the extended version of « as the following signed permutation:

(a(0), a(1),...,(n),a(n+ 1)) = (0,a(1),...,a(n),n+ 1)

Breakpoint: If (z,y) appear in (extended) « but neither (z,y) nor (—y, —z) appear in (extended) 3, then (z,y) is
a breakpoint of o with respect to 3.

Example: o = (—=2,—3,+1,46,—5,—4) and 8 = (+1,+2,+3,+4, +5,+6). Then the extended versions of o and 3 are
respectively (0, —2, —3, 41,46, -5, —4,+7) and 8 = (0, +1, 42,43, +4, +5,+6,+7). The breakpoints of « with respect
to B are: (0,—2), (—2,-3), (=3,+1), (+1,46), (+6,—5), (—4,+7). Note that (—5,—4) is not a breakpoint since (4, 5)
appears in (3.

Why breakpoints are important? Intuitively, if (z,y) is a breakpoint, then in order to transform « into [, some
reversal must separate between x and y. Therefore, the number of breakpoints is an indication to how many reversals
are required.

Let bg(a) be the number of breakpoints of a with respect to 8. Note that bg(3) = 0. We will ommit the subscript
when implicit or not particularly important.

A simple observation is that a reversal p = [i,j] can reduce the number of breakpoints by at most two since it
separates between «(i — 1) and «(i)) and between «(j) and «(j 4+ 1)). This simple observation can be expressed as
follows: b(a) — b(ap) < 2. Note that a reversal p that decreases the number of breakpoints by two is not necessarily a
one that makes progress, i.e. it is possible that d(ap) # d(a) — 1.

Let p1, ..., p; be such that ap;...p; = 3. Then,
b(a) — b(apr) <2
b(ap1) — blapipz2) <2
blapy...pt—1) — blapy..pr) <2

This implies that b(a) — b(ap;...pr) < 2t. But b(ap;...pr) = b(8) = 0. Therefore b(«) < 2t. But d(«) > t; therefore,
d(a) > @. This lower bound is not very tight. We will refine it.

Reality and Desire Diagram: a better lower bound

We repreresnt each element of the signed permutation as a tuple: +a is represented as (—a+a) and —a is represented
as (+a —a). We will also consider then extended version of a permutation, i.e. having 0 and n + 1 at the left and right
extermities respectively. For example, the signed permutation o« = (+3, —2, —1,+4, —5) is represented as a sequence of

adjacent tuples as follows.
a=0(=3+3)(-2+2)(+1-1)(-4+4) (+5-5)6

We represent a by a graph as follows:
o—e 6—0 o—0 o—0 oo—0
0 -3 +43 +2 -2 +#1 -1 -4 +4 +5 5 6
Figure 4: « as a graph
Similarly, 8 = (+1, 42, +3, +4, +5) is represented as the following graph:
o—e 6—90 o6—0 o—0 oe—o°
0 -1 +1 -2 +2 -3 +3 -4 +4 5 +5 6

Figure 5: 3 as a graph

The advantage of this redundant representation of the elements of a permutation is that now we can represent o and
0 on the same (multi) graph as follows:

0 -3 +3 +2 -2 +1 -1 -4 +4 +5 -5 6

Figure 6: a and 3 as one graph

We call the above “Reality and Desire Diagtam” of @ with respect to 5 and we denote it by RDg(«). Again, we will
ommit the subscript 8 when implicit or not particularly important. The reason we call the above graph a “diagram” is
because a graph can be drawn in an arbitrary way, but we will always draw RD(«) in a special. Vertices are on the line
and their order is the same order as the elements of . « is represented by horizontal edges (on the line) and they will
be called reality edges. (is represented by the top edges (always above the line) and they will be called desire edges.
An alternative is to close the two end points of the line (0 and n + 1) together making a circle and putting the reality
edges on the circumference of the circle and the desire edges inside the circle:

Let us look at the properties of RD(«) as a graph:

e (1) each vertex has one reality edge and one desire edge that are incident to it

e (1) => (2) the connected components are alternating cycles (edges alternate between reality and desire)

Figure 7: Reality and Desire diagram RDg(c)

e (2) => (3) the maximum number of components (cycles) is n + 1 (each cycle in that case will have a length of 2).
e (4) each cycle of length 2 corresponds to a non-breakpoint

o (4) => (5) if cg(e) is the number of cycles in RDg(a), then c3(8) = n+ 1 and § is the only permutation with
that property

So in a way, we can see that the process of transforming « into § as a process of transforming RDg(«) into a graph
with as many cycles as possible (i.e. n + 1). That does not necessarily mean that every reversal that increases the
number of cycles is good. However, a very natural question now is how does a reversal effect the cycles in RD(a)?

Let us look first at how a reversal affects RD(a). A reversal is characterized by the two points were it cuts the
permutatation, each defined by a reality edge.

Let p be a reversal defined by two reality edges (s,t) and (u,v), the RD(ap) differs from RD(«) as follows:
e Reality edges (s,¢) and (u,v) are replaced by (s,u) and (t,v)
e Desire edges remain unchanged
e Vertices u, ...,t are reversed

The following figure illustrates the effect of a reversal on RD(a).

Figure 8: Effect of reversal on RDg(«)

The following result tells us how the number of cycles is affected by a reversal. We need an important definition before
stating the result. Two reality edges on the same cycle converge iff they are traversed in the same direction (clockwise
or counterclockwise) on the cycle. For example, in Figure 7, edges (4+3,42) and (—1,—4) converge, and edges (0, —3)
and (+3,42) diverge.

Let p be a reversal defined by two reality edges e and f, then:

e If e and f belong to different cycles, c(ap) = c¢(a) — 1

e If e and f belong to the same cycle and converge, c(ap) = c¢(a)

e If e and f belong to the same cycle and diverge, c(ap) = c(a) + 1

Proof: Ilustrated below for each case:

=~ —\“-I
s\ SO /v St v
[4 \‘~,,' /
‘l A - N“\
| SN u U e “t
case 1
t o U oE
case 11
fo= -~
St o “jv S NS v
\“~e_ _-" [
\’ >~~~/ ‘/ ‘o
| NS U e “t
case 111

Therefore, c¢(ap) — c(a) < 1 for any reversal p. This gives us another lower bound:
Let p1, ..., p+ be such that ap;...ps = 8. Then,

clapr) — c(a) <1
c(ap1pz) — c(apr) <1

clapy...or) —clapr..pi—1) <1

This implies that c(ap;...pr) — c(a) < t. But c(apy...pr) = ¢(8) = n+ 1. Therefore n+ 1 — c(a) < t. But d(a) > ¢
therefore, d(a) > n + 1 — ¢(a). This lower bound is very good, unlike the one previously derived. For most signed
permutations, it comes very close to the actual distance. The reason it does not always work will be explained below.

Components in RDg(a)

We will explain how a number of cycles in RD(«) can be put together to form a component. We will define several
properties of components and obtain a very tight lower bound based on these properties.

First we define some simple properties of cycles. A cycle is good iff it has two reality edges that diverge. A cycle is
bad iff all its reality edges converge

A proper cycle is a cycle with at least 4 edges. Note that we need not worry about non-proper cycles (2 edges only),
they represent the non-breakpoints (reality = desire) and should remain unchanged.

Assuming the special way of drawing RD(«), two cycle interleave iff a desire edge of one crosses a desire edge of
another. For instance, in the figure below, A and F interleave, B and C interleave, C and D interleave, and B and D
interleave.

We define components as follows: construct the interleaving graph where vertices are cycles, and two vertices are
connected by an edge iff their two corresponding cycles interleave. The connected components of the interleaving graph
(each an interleaving set of cycles) are the components of RD(«a). For instance, in the figure below, the components are
{F}, {A, E}, and {B,C, D}.

A component is good iff it contains at least one good cycle. Otherwise, the component is bad. For instnace, in the
figure below, {F'} is a good component because the cycle F is good, {A, E'} is a bad component because neither A nor
E is a good cycle, and finally, {B, C, D} is a good component because the cycle C' is good.

Why do we have this characterization of good and bad components? Well, consider a bad component. By definition
it does not contain a good cycle. Therefore, it does not contain a cycle that has two divergent edges. As a result, any
reversal defined by two reality edges in that component does not increase the number of cycles, and hence does not
make progress towards the desired permutation 3. Moreover, by the definition of a component, any reversal defined by
two reality edges in one component cannot affect another component (non of the cycles of the first interleave with any
cycle of the second).

Figure 9: Interleaving and components

Therefore, a bad component will remain until

e a reversal defined by two reality edges in that component is performed, or

e a reversal defined by two reality edges in different components (i.e. in different cycles) is performed

In either cases, the reversal does not increase the number of cycles and hence does not make progress, and the lower
bound n + 1 — ¢(a) will not be achieved.

However, not all bad components will necessarily contribute to a “bad” reversal as argued above. The reason being
that a bad component can be “twisted” by a reversal and transformed into a good component. For instance, if a bad
component B separates two other bad components A and C, and a reversal p defined by two edges e € A and f € C
is performed (it decreases the number of cycles by 1), p will reverse the order of some vertices in B causing some bad
cycles of B to become good and hence making B a good component (by the same argument a good component can be
turned into a bad one). The two extra reversals p and the one needed to increase the number of cycles back to where it
was, can be associated with A and C'. B did not contribute to any bad reversal. Below we present a characterization of
the bad components that really contribute in exceeding the lower bound n + 1 — ¢(«).

We divide bad components into hurdles and non hurdles. We further divide hurdles into super hurdles and simple
hurdles.

Bad Components

.\J

Non-Hurdles Hurdles

?

Simple Hurdles Super Hurdles.

Figure 10: Classification of bad components

As argued above, separation is an important concept. We say that a component B separates components A and C
if all chords in RD(«) that link a vertex in A to a vetex in C cross a desire edge of B (assuming the special way of
drawing RD(«)).

A argued abovem a reversal defined by two edges in different components A and C will result in every component B
that separate A and C' being twisted. A bad component becomes good when twisted, but a good component can remain
good or become bad upon twisting. Therefore, we will resort to twisting only when there are no good components
around.

A bad component is a hurdle iff it does not separate any two other bad components. For instance, in the figure below,
components A, C, D, and F are hurdles.

Figure 11: Hurdles

A super hurdle is a hurdle A such that its removal will cause a non-hurdle B to become a hurdle, we say A protects
B. Otherwise, a hurdle is just a simple hurdle. For instance, in the figure above, component F' is a super hurdle because
it protects E. All other hurdles are simple hurdles.

Finally, a signed permutation « is called a fortress iff RD(«) has an odd number of hurdles and all of them are super
hurdles. The smallest fortress has three super hurdles as illustrated below (note RD(«) has to have at least 48 vertices,
ie. n+1=48/2 and « has at least 23 elements).

~
/
/
|

Figure 12: Fortress

We will see later that dg(o) =n+ 1 — cg(a) + hg(e) if v is not a fortress, where hg() is the number of hurdles. If
« is a fortress, then dg(a) =n+ 1 — cg(a) + hg(a) + 1.

References

Setubal J., Meidanis J., Introduction to Computational Molecular Biology, Chapter 7.
Pevzner P., Computational Molecular Biology, Chapter 10.

