
Saad Mneimneh

Computat onal Biology

Lecture 18

Saad Mneimneh

Genome Rearrangements
Finding preserved genes

• We have seen before how to rearrange a
genome to obtain another one based on:

– Reversals
– Knowledge of preserved blocks (or genes)

• Now we are concerned in determining the
preserved genes, or more generally, given two
strings x and y, determine all their possible
maximal matches

Saad Mneimneh

Global alignment

• One possibility is to perform a global alignment of x and
y with a special scoring scheme (for instance +1, 0, 0)
and identify the maximal positively scoring chunks.

– Takes O(mn) time
– Does not give all candidate matches
– Might not give maximal matches

• Example:

x= bbbaxaaabbb
y =------aabbb

bbbaxaaabbb
---a---abbb

non-maximal, aabbb is better

missed

Saad Mneimneh

A simple way: k-mers

Another possibility is to find common k-mers.
Here’s one way:

Algorithm:

– Denote a k-mer of x by (w, 0, i) where w = xi…xi+k-1

– Denote a k-mer of y by (z, 1, j) where z = yj…yj+k-1

– Sort them lexicographically
– Deduce all k long matches between x and y

Saad Mneimneh

k-mers

Example:

x = cabbc, y = bbcab

x’s 3-mers: (cab, 0, 1), (abb, 0, 2), (bbc, 0, 3)
y’s 3-mers: (bbc, 1, 1), (bca, 1, 2), (cab, 1, 3)

sort them: (abb, 0, 2), (bbc, 0, 3), (bbc, 1, 1),
(bca, 1, 2), (cab, 0, 1), (cab, 1, 3)

Identify matches: (bbc, 0, 3), (bbc, 1, 1) and
(cab, 0, 1), (cab, 1, 3)

Saad Mneimneh

Disadvantages

• Worst case running time still O(mn)

– e.g. O(m) k-mers in x and O(n) k-mers in y are identical.

– Thought: aren’t we supposed to find these anyway and,
therefore, the O(mn) bound is not necessarily bad?

– No, they might be small insignificant matches, we are interested
in maximal matches

• Making k larger reduces the running time because it
results in a shortest list of matches, but we might miss
significant matches

Saad Mneimneh

A better solution…
Suffix tree

• We will use an efficient data structure called suffix tree that stores all
suffixes of a string and supports fast lookup

• Definition: A suffix tree T of a string s of length m is a rooted tree
such that:

– It has exactly m leaves numbered 1 to m

– Each internal node other than the root has at least two children

– Each edge is labeled by a substring of s

– No two edge labels out of a node start with the same character

– For any leaf i, the concatenation of the edge labels on the path from the
root to i spells out the suffix xi…xm

Saad Mneimneh

Example of suffix tree

s = xabxac

x a b x a c

a

c
c

b
x

a
c

b
x

a
c

1

23 5

6

c

4

Saad Mneimneh

Existence
• Does a suffix tree of a string s always exist?

• Consider s = xabxa

• If a suffix is a prefix of another suffix, then the path for
the first suffix would not end at a leaf!

• Solution: always terminate a string with a special
character $ that does not occur anywhere.

x a b x a c

a

c
c

b
x

a
c

b
x

a
c

1

23 5

6

c

4

Saad Mneimneh

Properties of a suffix tree

A suffix tree satisfies the following:

• |E| = |V| – 1 (tree)

• Number of leaves = m + 1 (now |s| = m + 1)

• Since each internal node has at least two children, the
number of edges |E| = O(# leaves) = O(m)

• Any sub-tree with k leaves satisfies |E| = O(k)

Saad Mneimneh

Building a suffix tree

Here’s a simple algorithm:

given x = x1…xm

insert a special character $ at the end of s
initialize the tree T to one root

for j = 1 to m + 1

find the longest match of xj…xm in T starting from the root and following a
unique path

split the edge where the match stops, add a new node w

add an edge (w,j) (j is the new leaf) and label it with the remaining
unmatched characters of xj…xm

Saad Mneimneh

$

$7

Example

s = xabxac

abxac$ a
b

x
a

c

2
ac

c

5

$

c$

c

6

$

bxac$

b
x

a
c

3

$

xabxac$ x a b x a c $ 1

xac$

c

4
$

Saad Mneimneh

Analysis

• Running time: O(m2)
– Each suffix requires O(m) time to update the tree

• But, there exists an O(m) time suffix tree algorithm

• Space: O(m)

– How? Each label has O(m) characters and we have |E| = O(m)
labels!

– Solution: do not explicitly store labels, but store the indices [i,j] of
a label

Saad Mneimneh

Now what?

• How can we use the suffix tree data structure to
identify all maximal matches between two strings
x and y?

• Consider first the following problem: given a
string x, determine all locations where another
string y occurs.

• This can be solved efficiently as described next.

Saad Mneimneh

string matching

Find all occurrences of y in x

Algorithm

build a suffix tree T for x O(m)

Match the characters of y along the unique path in T until
(case 1) either y is exhausted or O(n)
(case 2) no more matches are possible

if (case 2) y does not occur in x O(1)

else the k leaves in the sub-tree below the point of the
last match give the k location of y in x
(traverse the tree in linear time) O(k)

Saad Mneimneh

Correctness

• Why is the string matching algorithm correct?

• If y occurs in x at position i, then the ith suffix of x
must start with y

• Therefore, leaf i must be reached by the path
determined by y

Saad Mneimneh

Finding maximal matches
• Given x and y, we would like to find all maximal matches between x

and y

– xi…xi+l = yj…yj+l

– Cannot extend xi…xi+l and yj…yj+l and obtain a match

• We will find all matches starting at yj that cannot be extended to the
right

– Build a suffix tree for x (do this only once)

– Find the path in T determined by the longest possible prefix of the suffix yj…yn (it
could stop in the middle of an edge e in that case e is part of the path)

– Let vk, k = 1…p be an internal node on this path and Tk be the sub-tree rooted at
vk that excludes vk+1

– Identify the leaves in each sub-tree

Saad Mneimneh

Illustration
root

v1

vpT1

Tp

Last point of match

A leaf i in Tk gives the location in x of a match
between xi…xi+|L1|+…+|Lk|-1 and yj…yj+|L1|+…+|Lk|-1
that cannot be extended to the right

Running time: O(m) {building T} + O(Σ|Lk| + Σmk)

L1

Lp

v2

T2

L2

vp-1

Tp-1

O(n + m)

m1 leaves

Saad Mneimneh

What about left?

• Given a leaf i, let left(i) be the character xi-1

• If left(i) ≠ yj-1, then i represents a maximal match

• Therefore, we obtain all maximal matches
between x and y in O(mn) time by repeating the
previous algorithm for every suffix of y

Saad Mneimneh

Algorithm
Build a suffix tree T for x

for j = 1 to n

find the path in T determined by the longest possible prefix of the
suffix yj…yn (it could stop in the middle of an edge e in that case e is
part of the path)

let vk, k = 1…p be an internal node on this path and Tk be the
sub-tree rooted at vk that excludes vk+1

Let l(vk) = length of match up to node vk

identify all leaves i in each sub-tree such that left(i) ≠ yj-1

Such a leaf i in sub-tree Tk represents a maximal match of length
l(vk) starting at position i in x and position j in y

O(m)

O(n)

O(m)

Saad Mneimneh

Generalized suffix tree
for a set of strings

• We can build a suffix tree for a set of strings s1, s2, …, sn

– Append a different end of string marker to each string in the set

– concatenate all the strings together

– build a suffix tree for the concatenated string

• The resulting suffix tree will have a leaf for each suffix of the
concatenated string and is build in time proportional to the sum of all
lengths

• The leaf numbers can be easily converted to two numbers, one
identifying a string si and the other a starting position in si

Saad Mneimneh

Example

s1 = xabxa, s2 = babxba

s = xabxa$babxba#

x a bxa$babxba#

bx

a$babxba#

b x a$babxba#

$babxba#

$babxba#

a
1,1

1,4

1,5
1,2

1,3

$babxba#

1,6

a bxba#

2,1 ba#

2,2

ba#

2,3

ba#

2,4

#

2,5

#
2,7

#
2,8

Saad Mneimneh

Fix labels of leaf edges

• One defect is that the
tree now represents
suffixes that span more
than one original string

• Because each string
marker occurs only once,
the unwanted suffixes
are removed by fixing the
label on leaf edges

x a bxa$babxba#

bx

a$babxba#

b x a$babxba#

$babxba#
$babxba#

a
1,1

1,4

1,5
1,2

1,3

$babxba#

1,6
a bxba#

2,1 ba#

2,2

ba#

2,3

ba#

2,4

#

2,5

#
2,7

#
2,8

Saad Mneimneh

Suffix tree for x and y
• Therefore, given two strings x and y, we can build a suffix tree for

both in O(m + n) (i.e. linear) time.

• Each leaf in the tree represents

– Either a suffix from x

– Or a suffix from y

• Mark each internal node v with x (y) if there is a leaf in the sub-tree
of v representing a suffix from x (y). This can be done in linear time
by a bottom up traversal of the tree from leaves to the root.

• Note that if v is marked x (y), all ancestors of v are marked x (y).

Saad Mneimneh

Common substrings
If αp is a substring of x and αq is a substring of y for p ≠ q, then α
corresponds to an internal node v marked with both x and y and
vice-versa.

Proof: α occurs in both x and y such that the character to the right of
α in x differs from the character to the right of α in y.

conversely, every internal node marked with both x and y has to
satisfy the situation depicted above, then αp is a substring of x and
αq is a substring of y for p ≠ q.

x,y

α

leaf
for x

leaf
for y

Saad Mneimneh

Left diverse node

An internal node v is left diverse iff it has two children v1 and v2 with
a leaf i for x in v1’s sub-tree and a leaf j for y in v2’s sub-tree, such
that left(i) ≠ left(j)

(assume x0 and y0 are different and distinct from any other
character)

If uαp is a substring of x and wαq is a substring of y for u ≠ w and
p ≠ q, then α corresponds to a left diverse node v and vice-versa.

Proof: similar to previous proof

Call such an α a maximal common substring

Saad Mneimneh

Compact representation

• Therefore, we have only O(m + n) maximal common substrings for x
and y (but each maximal common substring might appear in multiple
locations)

• If we identify left diverse nodes in linear time, we need only O(m + n)
time and space to come up with this compact representation of all
maximal common substrings

• A maximal match can be represented as (p1, p2, l) where p1 and p2
are the positions of a maximal common substring of length l in x and
y respectively

• We can obtain all maximal matches in O(m + n + k) where k is their
number (we will not present the algorithm)

Saad Mneimneh

Identifying left diverse nodes
• For each node the algorithm records:

– the character a(v):
• the left character of every leaf for x in v’s sub-tree, or
• a special character ε if no leaf for x exists in v’s sub-tree, or
• a special character &

– the character b(v):
• the left character of every leaf for y in v’s sub-tree, or
• a special character ε if no leaf for y exists in v’s sub-tree, or
• a special character @

• Computing a(v) and b(v) can be done in a bottom up approach in linear time

• Note that v is left diverse iff it has two children v1 and v2 with:

– a(v1) ≠ b(v2), a(v1) ≠ ε, b(v2) ≠ ε or

– b(v1) ≠ a(v2), b(v1) ≠ ε, a(v2) ≠ ε

– It takes O(|Σ|2) time (constant) to find two such children or none, where Σ is the
alphabet (each node has at most |Σ| children)

