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Chaining local alignments

• Having found many maximal matches (local alignments) between x
and y with different lengths, we would like to chain them together to
maximize the sum of lengths

• Each match xa, …, xb and yc, …, yd can be represented as a square 
in two dimensions

• Two squares can be chained if the top left corner of one is below 
and to the right of the bottom right corner of the other
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Generalizing

• We have rectangles, each with a weight w

• Two rectangles i and j can be in the same chain 
if the bottom left corner of j is above and to the 
right of the top right corner of i, we say j follows i
in the chain  

• We would like to find a chain with maximum 
weight
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Simple solution
• Construct a directed acyclic graph G:

– one vertex for each rectangle 

– a directed edge from vertex i to vertex j iff rectangle j can follow rectangle i in some chain  

• Let v(i) be the maximum weight of a chain that ends in rectangle i.

Algorithm:

v(j) � w(j) for all vertices j

topologically sort G (if i before j, there is no edge (j, i), i.e. i cannot follow j in a chain)

updating v(i) can only affect v(j) for j > i
for all vertices j in order

v(j) � w(j) + max v(i) where edge e = (i,j) exists

the rectangle i with max v(i) is the end of the optimal chain and 
we can trace back by keeping pointers
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Example

1 2 65 47 8 3 9

v(1)=3 v(2)=5 v(5)=2 v(7)=4 v(8)=11 v(3)=10 v(4)=8 v(6)=13 v(9)=15
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Running time

• Topological sort can be done in linear time in the number 
of vertices and edges of G; therefore in O(n2), where n is 
the number of rectangles

• Updating v(i) for all i takes O(n2) time as well

• We would like a better time bound like O(nlog n)

• The bound O(nlog n) can be achieve

• We will consider an O(nlog n) time algorithm for the one 
dimensional problem (rectangles become segments on 
the x line) and then generalize it for two dimensions
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One dimension

• We have n segments 

• Let I be the list of all 2n left and right end points

sort I
V � 0
for i = 1 to 2n

if I[i] is left of segment j, set v(j) to w(j) + V [ entering j ]
if I[i] is right of segment j, set V to max(v(j), V) [ exiting j ]

• The value of V at the end is the weight of the optimal chain

• The chain itself can be obtained by the now familiar back tracing strategy
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Correctness and time

• When entering a segment j, j has a potential to 
participate in the chain and contribute a w(j) to the max
weight computed so far to make it 

v(j) = V + w(j)

• When leaving segment j, v(j) is used as the maximum 
weight unless a better maximum V has been found 
before exiting j

• The running time is O(nlog n) dominated by the sorting 
operation
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Two dimensions

• We will generalize the approach for the one dimension

• Let I be the list of the left and right end points of the 
rectangles (x coordinates)

• The chaining algorithm processes the entries in I in order 
(left to right) as in the one dimension case

• But the algorithm must also consider the y coordinates of 
each rectangle
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Idea

• As we go through I,  we keep a list L of some rectangles that are 
possible ends for the current chain 

• Let lj be the low y coordinate of rectangle j and hj be the high y
coordinate of rectangle j

• Each rectangle in L will be represented as a triple (hj, v(j), j) where:

– hj: high y coordinate of rectangle j

– v(j): maximum weight of a chain that ends in rectangle j

– j: the rectangle
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Entering a rectangle

• When we enter a rectangle k, k has a potential to 
contribute w(k) to the weight of the chain

• Rectangle k has to be chained to one of the rectangles in 
L to extend the chain

• We look for the rectangle j in L that is closest to k (in the 
y dimension) with hj < lk

• We set v(k) = w(k) + v(j)

• Is v(k) computed as above the maximum weight of a 
chain ending in rectangle k? Let’s see…
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Computing v(k)

If k can follow j, then k can follow i

Therefore we need to make sure that if v(i) ≥ v(j) and hj ≥ hi, 
rectangle j is not in the list L

list L entering k

j

i

k v(k) = w(k) + v(j)

closest to k

What if v(i) > v(j)?
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Restrictive rectangle

If 
– v(i) ≥ v(j) and
– hj ≥ hi

then we say that rectangle j is more restrictive than 
rectangle i

If 
– i ∈ L and 
– j is more restrictive than i

then j ∉ L
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But what if…

but here k cannot follow i and j should be used !

make sure i is inserted in L only when we exit i

list L entering k

j

i

k v(k) = w(k) + v(j)

closest to k

i not exited yet

j is more restrictive than i
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Exiting a rectangle

• When we exit a rectangle k, we insert it in L only 
if k is not more restrictive than some j ∈ L

• Moreover, after we insert k, we delete from L all j
that are more restrictive than k

• Therefore, L satisfies the following:

If hi < hj  ⇔ v(i) < v(j)
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Therefore…

The value of v(k) is computed correctly as 

v(k) = w(k) + v(j) 

where j ∈ L is closest to k with hj < lk because:

– j is not more restrictive than any i ∈ L

– k can follow j because j ∈ L means that j ends before k starts

– all j that end before k starts where considered for L
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Algorithm
L � φ
for i = 1 to 2n

begin

if I[i] is left of rectangle k [entering k]
then find highest hj < lk in L

v(k) = w(k) + v(j)

if I[i] is right of rectangle k [exiting k]
then find highest hj ≤ hk in L

if v(k) > v(j) 
then insert k in L

delete all entries j from L with hj ≥ hk and v(j) ≤ v(k) 

end

The maximum v(j) in L is the value of the maximum weight chain
The chain can be obtained by a back tracing strategy
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Analysis
• Sorting I takes O(nlog n) time

• Keep L as a balanced binary search tree sorted by hj, e.g. AVL tree

• Searching L:

– Either for highest hj < lk or for highest hj ≤ hk takes O(log n) time 

– The total time of search is O(nlog n) 

• Inserting in L:

– Insertion operation takes O(log n) time

– The time needed for all insertions is O(nlog n)
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Analysis (cont.)

• Deleting from L:

– All entries to be deleted start just after (hk, v(k), k) and are successive 
because L is sorted by increasing order of v(j) 

– Therefore, successively examine L starting after (hk, v(k), k) until the first 
(hj, v(j), j) with v(j) > v(k) is found

– Successor operation takes O(log n) time

– Deletion operation takes O(log n) time

– The total time needed for all deletions is O(nlog n)


