
Computational Biology
Lecture 21: Protein folding and threading

Saad Mneimneh

As was the case with RNA folding, the goal is to determine the three-dimensional structure of a protein based on
its amino acid sequence. There is a strong belief that the amino acid sequence completely and uniquely determines
the folding. This is reinforced by the following experiment: Unfold a protein (by exerting a certain temperature) and
then release it such that no other substances are present. The protein immediately folds back to the three-dimensional
structure it had before, thus called its native structure. The folding process takes less than a second. Therefore,
it appears that all information necessary for the protein to achieve its native structure is contained in the amino acid
sequence (this is not true for all proteins because there are some that need auxiliary molecules to fold). Before discussing
the protein folding prediction, we describe the main components of the protein three-dimensional structure, known as
protein secondary structures. These are α-helices, β-sheets, and loops.

Protein secondary structures

There are three main secondary structures that we observe in proteins:

α-helices

An α-helix is a simple helix having on average 10 residues (3 turns of the helix). Some helices can have as many as 40
residues. Some amino acids appear more frequently on helices than other amino acids, but this is not a strong enough
fact to allow accurate prediction.

β-sheets

A β-sheet consists of bindings between several sections of the amino acid sequence. Each participating section is called
a β-strand and has generally 5 to 10 residues. The strands become adjacent to each other forming a kind of twisted
sheet, thus the name. Certain amino acids show a preference for being in a β-sheet, but again these preferences are not
so positive to allow accurate prediction.

Loops

A loop is neither a helix not a sheet. It is a section of the sequence that connects the other two kinds of secondary
structure (α-helices and β-sheets). Loops do not form regular structures, both in shape and size. In general, loops are
outside a folded protein, whereas the other structures form the protein core. The core is going to be important for the
threading problem that we discuss later.

Here’s an illustration of a folded protein (better seen in color):

α-helix

β-sheet

loop

Figure 1: A folded protein

1

Motifs and Domains

A motif is a simple combination of a few secondary structures that appears in several different proteins. An example
of a motif is the helix-loop-helix. Research as shown that this motif is used as a binding site for calcium atoms, so this
structure has a clear function. Other motifs appear to play no role at all in protein function.

A domain is a more complex combination of secondary structures that by definition has a very specific function, and
therefore contains an active site, which is the a section of the protein where some binding to an external molecule can
take place. A protein may have only one domain, or may contain several. All of them taken together form the protein’s
tertiary structure. We will study the problem of motif (domain) finding and identification later in the course.

Protein folding problem

The protein folding problem is the following: Given the amino acid sequence of a protein, determine:

• where exactly all of its α-helices, β-sheets, and loops are, and

• how they arrange themselves in motifs and domains

There are several approaches to this problem (non of them is fully satisfactory). Most of these approaches are based
on finding a folding with minimum free energy and, therefore, they assume that such a folding (or conformation) is the
protein’s native structure (not yet a proved fact).

Greedy approach

Recall from the early lectures that a protein fold thanks in large to the angles φ and ψ between the carbon atom of a
residue and the neighboring atoms (N and (CO)) in the peptide bond −N −C− (CO)−. Experiments have shown that
these angles can assume only a few values independently of each other. Therefore each residue will be in a configuration
given by a pair of values for φ and ψ.

Suppose both φ and ψ can assume 3 values and the protein is 100 residues long, then we have to examine 9100 foldings
because each reside can be in any of the 3 × 3 = 9 configurations. This is of course not feasible. Even if we forget
about this tiny detail and we agree that the protein’s native structure is in deed the one with minimum free energey,
there is no agreement on how to compute the free energy of a folding. Too many factors are involves such as shape,
size, polarity of molecules, strength of interactons between molecules, etc... From current knowledge it is possible to
formulate some general rules, such as the requirement that hydrophobic (H) amino acids (they are afraid of water) stay
“inside” the protein and hydrophilic or polar (P) amino acids staty “outside” the protein, in the case of proteins in
solutions where water is the solvent found both inside and outside cells. We will see this HP model of protein folding
again in the combinatorial approach.

Simulation approach

With this approach we attempt to simulate the real combined physical/chemical/biological process of protein folding.
There are many methods for carrying out the simulation and they highly depend on the physical assumptions and and
the underlying mathematical models.

One type of simulation aims at understanding the bevaior of the protein by simulating the folding of known structures.
In such simulation, the minimum energy conformation is known (or explicitly constructed). Then starting from the
sequence of amino acids, the simulation guides the protein to reach the native conformation, and the behavior of the
protein during this process is observed. The protein was observed to exhibit some intermediate conformation, then
unfold back, and repeat this behavior until the native conformation (the one with the minimum energy) is reached. This
behavior was verified experimentally. We will describe very briefly how such a simulation might proceed.

Given a conformation, if two amino acids are neighbors, they are said to be in “contact”, and hence they contribute
to the free energy. Therefore, given a sequence a = a1...an, for two given amino acids ai and ai we define dc(i, j) to be
the distance between ai and aj in a conformation c. If dc(i, j) is less than a threshold, we let ∆c(i, j) = 1 (ai and aj are
in contact); otherwise, ∆c(i, j)=0.

Let Hc =
∑

i,j B(i, j)∆c(i, j) where B(i, j) represents the interaction between ai and aj if they are in contact. H
desribes the short-range pairwise interactions, and hence it is a sort of energy, but it is not exactly the free energy of
the comformation.

A good measure of how close a conformation c is to the native conformation nc is given by Qc =
∑

i,j ∆c(i, j)∆nc(i, j).
Therefore, the simulation should guide the protein to maximize Q. The dynamics of the protein are modeled as a random

2

process where local movements of amino acids are considered, and always accepted if the new conformation has higher
Q, but only accepted with probability e−k(Qnew−Qold) for some constant k.

Let Q(t) = Qc where conformation c is the current conformation at time t. The simulation revieled that for the early
times of the folding process, Q(t)/Qnc is a low constant suggesting that the protein finds some native contact. But non
of these constacts were found to be fixed, i.e. nfix(t)/n ≈ 0 where nfix(t) is the number of proteins with low positional
variance at time t. After some time however, persistent contacts suddenly form and nfix(t)/n raises rapidly to become
comparable to Q(t)/Qnc. There is a gradual increase in Q(t)/Qnc and then both measures remain nearly constant for
some time. This could then lead to folding to the native conformation or unfolding, and the process repeats until the
native conformation is reached.

By running the simulation several times, statistical data regarding the intermediate conformations can be obtained; for
instance, one could calculate the probability that a given intermediate conformation will lead to a native conformation.

Combinatorial approach

The combinatorial approach abstracts the problem as follows: given a string s and an infinite grid, fold the string
by finding a walk on the grid, i.e. a non self intersecting path, such that some objective function is maximized. For
instance, the objective might be to maximize the number of adjacent identical characters (amino acids). More generally,
the objective is to maximize f =

∑
i,j w(i, j)∆(i, j) where w(i, j) is the amount of interaction between si and sj , and

∆(i, j) = 1 iff si and sj are adjacent on the grid. For example, let s = bacbbcacba and the grid be the two dimensional
square grid. Let w(i, j) = 1 iff si = sj . This means that f is the number of adjacent identical characters. Then the
following fold maximizes f to be 5 (by creating 4 bonds in addition to b-b that is already part of the string).

b c a a

b c c b

b a

b c a a

b c c b

b a

Figure 2: Folding bacbbcacba on a 2D square grid

In general, the grid needs not be a square nor two dimensional. The three dimensional square grid (cube) is the most
popular. But triangluar grids (both 2D and 3D) have been considered as well.

We have different variations of the problem depending on the objective function f . Here are some popular models:

• contact model: w(i, j) = 1 iff si = sj

• HP model: w(i, j) = 1 iff si = sj and both represent a hydrophobic amino acid

The motivation behind the first model is the maximize bonds among identical amino acids. The motivation behind
the second model is to maximize bonds among hydrophobic amino acids, since these are thought to be the ones that
fold quickly into the core of the protein to be protected from water.

The problem is NP hard under the various models. Paterson and Przytucka showed that the contact model is NP
hard on two and three dimensional square grids when the string alphabet is not finite. Atkins and Hart showed that the
contact model is NP hard on three dimensional square grids with a finite alphabet size (13 amino acids). Berger and
Leighton showed that the HP model is NP hard on three dimensional square grids (here the alphabet size is two since
we distinguish among H and P amino acids only).

Because of the difficulties associated with the above approaches, other techniques have been developed, e.g. Protein
Threading.

Protein threading problem

An early method used for secondary structure prediction was based on the idea that similar sequences should have
similar structures. If we know the structure of protein A (from x-ray crystallography, say) and protein B is very similar
to it at the sequence level, it seems reasonable to assume that B’s structure will be the same or nearly the same as

3

A’s. Unfortunately, this is not true in general. Similar proteins at the sequence level may have very different secondary
structures. On the other hand it has been observed that certain proteins that are very different at the sequence level
are structurally related in the following sense: although they have different kinds of loops, they have very similar
cores. These observations have led researches to propose the protein threading problem: instead of trying to predict the
structure from the sequence, we try to fit the core of a known structure to a sequence.

Therefore, given a protein whose structure is known, we obtain a structural model by replacing amino acids by place
holdres, but keeping with each place holder some basic properties of the original amino acid. These properties can vary
depending on the model adopted, but they should retain the fact that the original amino acid was in an α-helix or a
β-sheet, or in a loop, and reflect spacial constraints of the structure such as distances to other amino acids, how much
inside or outside the whole structure the place holder is, and so on...

Given a structural model we can now get a protein with unknown structure and try to align it to the model. This
type of alignment is called protein threading.

We can formalize the problem as follows:

We are given:

• A protein sequence A with n amino acids a1...an

• A core s̄tructural model C, with m core segments, we have:

– the length ci of each core segment i

– core segments i and i + 1 are connected by loop for which we know the maximum lmax
i and minimum lmin

i

lengths

– properties of each amino acid in C

• A score function f to evaluate a threading

We want to find the set T = {t1, ..., tm} of integers that will maximize f such that each ti indicates what amino acid
from A occupies the first position from core segment i.

The following figure provides an illustration:

2211 33

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20

T = {5, 8, 17}

Figure 3: Threading: alignment of sequence to a core structural model

If we ignore interactions between amino acids, while still allowing variable-length loop regions, the threading problem
can be solved by a standard dynamic programming technique. The most difficult part is how to model the loops. Each
loop i will be modeled as a string xxx...xyyy...y of length lmax

i with lmin
i occurences of x followed by y’s. The scoring

function will be designed such that an alignment of an x to a gap will contribute −∞. This will force loop i to have
at least lmin

i characters from A. Similarly, to make sure that no gaps are present in the core segments, a gap in a
segment will contribute −∞. The rest is easy and we will not focus much on it here since we have seen many dynamic
programming algorithms.

If we allow pairwise interactions between amino acids, the threading problem becomes NP hard. We will allow pairwise
interactions and show how to solve the problem exactly with a standard technique for handling NP hard problems. This
technique is known as branch-and-bound.

4

Branch-and-Bound

In a combinatorial optimization problem we want to find the optimum solution among may possibilities in the solution
space. The optimum refers the maximum (or minimum) value of some function f that can be computed for each candidate
solution. For most of the problems the solution space is exponentially large. This does not necessarily mean that we
have to spend an exponential amount of time to find the optimum (we do not necessarily examine all the candidate
solutions in a greedy way). However, for some problems, no algorithm is known that can search the solution space and
find the optimum in polynomial time. These are typically the NP hard problems. Therefore, the only alternative to
obtain the optimum solution for sure is to enumerate and evaluate each candidate solution one by one and pick the best.
We can try to speedup the process by applying the branch-and-bound technique. Assume we are after maximizing f(s).

[branch]
First, it should be possible to divide the solution space into subspaces according to some constraints. For instance,

given a solution space X, we could partition it into X1 (all solution that have a certain property) and X2 (all solution
that do not). Note that the partitioning should be implicit, i.e. we do not explicitly enumerate the solutions.

[bound]
Second, for every partition X obtain an upper bound on the value of f(s) for every solution s ∈ X

Now how can this technique help speedup the process? Assume we have computed f(s) for a given s. Now consider
a subset X of the solution space with an upper bound u. If f(s) > u, then we can we discard all candidate solutions in
X because we already have a solution, s, that scores better than all solutions in X.

Of course branch-and-bound is just a high level technique. The actual implementation of this technique will differ
from one problem to another depending on how the solution space can be divided and how the bounds can be computed.

Before we proceed to our specific case, the threading problem, we list some remarks concerning branch-and-bound.
The upper bound (or lower bound in other cases) should be as close to the actual function value as possible, so that we
can find the maximum faster than with a weaker upper bound. The upper bound should also be efficient to compute;
otherwise, we defeat the purpose of speed up. Finally, even if we speedup the process by discarding some subsets of the
solution space, the worst case running time will still be exponential (NP hard problem).

Finding the solution space

Every solution of the threading problem has to satisfy the following two conditions for every i:

• 1 +
∑

j<i(cj + lmin
j) ≤ ti ≤ n + 1−∑

j≥i(cj + lmin
j)

• ti + ci + lmin
i ≤ ti+1 ≤ ti + ci + lmax

i

The first condition says that the sequence A has to fit in the structure. So it is a combination of the two conditions:
ti ≥ 1 +

∑
j<i(cj + lmin

j) and ti +
∑

j≥i(cj + lmin
j)− 1 ≤ n. The second condition enforces the minimum and maximum

constraints on the loop sizes. So it is a combination of the two conditions: ti+1 ≥ ti + ci + lmin
i and ti+1 ≤ ti + ci + lmax

i .
This implies that each ti must lie in some interval [bi, ei]. Therefore, a set of candidate solutions can be expressed as

a collection of intervals, one for each of the m ti’s as illustrated in the figure below:

ii

i-1i-1

i+1i+1

bi-1 bi ei-1 ei bi+1 ei+1

Figure 4: A set of solutions is a collection of intervals

5

Branching

Given a set of solutions, we can divide it as follows:

• choose a segment, say i

• choose a position ui inside the interval [bi, ei]

• split the set into three sets in which the intervals for ti will be:

– [bi, ui − 1]

– [ui + 1, ei]

– [ui]

We have not specified which core segment to choose nor which position inside the segments’s interval. These choices
can be made based on considerations such as interval size. Other approaches for dividing the set are possible and the
one outlined above is just an example. However, this approach guarantess to generate, upon a division, a set of solutions
in which some ti is forced to be equal to ui. Therefore, this approach helps in quickly obtaining a set X with a single
solution s (where ti is fixed for all i). This solution might not be optimal, but the upper bound on its set X is exactly
the value f(s). Therefore, f(s) can be used to discard all sets with an upper bound greater or equal to f(s).

Bounding

Given a candidate solution s, f(s) can be expressed as:

f(s) =
∑

i

g1(i, ti) +
∑

i

∑

j>i

g2(i, j, ti, tj)

where g1(i, ti) gives the score pertaining to segment i and g2(i, j, ti, tj) gives the score pertaining to the pairwise
interactions of segments i and j.

Given a set X of solutions, a simple upper bound is:

maxs∈X f(s) = maxs∈X

∑
i[g1(i, ti) +

∑
j>i g2(i, j, ti, tj)]

≤ ∑
i[maxbi≤x≤ei g1(i, x) +

∑
j>i maxbi≤y,z≤ei g2(i, j, y, z)]

This simple upper bound is obtained by maximizing every term in the summation while disregarding any constraints
among the terms. Therefore, it might not correspond to any f(s) where s ∈ X, but it is definitely an upper bound on
any f(s) for s ∈ X.

Given the above branch-and-bound technique, here’s a simple algorithm for searching for the optimum solution.

Algorithm

X ← all possible threadings (implicit representation by intervals)
ub ← upper bound for X

[use a max priority queue Q with keys being the upper bounds]
ENQUEUE(Q, (ub,X))

while (true)
do (ub,X) ← DEQUEUE(Q)

if |X| = 1 [the only remaining threading in the set]
then return X
else split(X)

for each subset Xi from X
do ubi ← upper bound for Xi

ENQUEUE(Q, (ubi, Xi))

6

Note that once a set with a single solution s is enqueued, it blocks all subsets with an upper bound smaller than f(s).
Therefore, if such a set is at the head of the queue, it definitely contains a solution s with maximum f(s).

Remark: The splitting might generate an invalid solution set; for instance, bi+1 ≤ ei. Such splitting must not be
considered.

References

Setubal J., Meidanis J., Introduction to Computational Molecular Biology, Chapter 8.

7

