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Protein folding
• The goal is to determine the three-dimensional structure of a protein 

based on its amino acid sequence

• Assumption: amino acid sequence completely and uniquely 
determines the folding

– unfold a protein and then release it

– it immediately folds back to the three-dimensional structure it had 
before, its “native” structure

• Protein secondary structures

– α-helices 

– β-sheets

– Neither helices nor sheets, called loops
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α-helix

• An α-helix is a simple helix having on average 
10 residues (3 turns of the helix)

• Some helices can have as many as 40 residues

• Some amino acids appear more frequently on 
helices than other amino acids, not a strong 
enough fact to allow accurate prediction
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β-sheet

• A β-sheet consists of binding between several sections 
of the amino acid sequence

• Each participating section is called a β-strand and has 
generally 5 to 10 residues

• The strands become adjacent to each other forming a 
kind of twisted sheet

• Certain amino acids show a preference for being in a     
β-sheet, but again these preferences are not so positive 
to allow accurate prediction
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Loop

• A loop is a section of the sequence that 
connects the other two kinds of secondary 
structure

• Loops are not regular structures both in shape 
and size

• In general, loops are outside a folded protein, 
whereas the other structures form the protein 
core
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A folded protein

α-helix

β-sheet

loop
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Motifs and Domains

• A motif is a simple combination of a few secondary 
structure that appear in several different proteins

– e.g. helix-loop-helix

• A motif might serve as a binding site to other molecules 
or may have no role at all.

• A domain is a more complex combination of secondary 
structures that have a very specific function; therefore, it 
contains a binding site (called active site)
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Protein folding

Given the amino acid sequence of a protein, 
determine:

– where exactly all of its α-helices, β-sheets, and loops 
are, and 

– how they arrange themselves in motifs and domains
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Greedy Approach

• Given enough chemical and physical information 
about each amino acid it should be possible to 
compute the free energy of a folding

• Enumerate all possible foldings, compute the 
free energy of each

• Choose the folding with the minimum free 
energy (assuming that such a folding is the 
protein’s native structure)
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Feasibility of greedy

• Recall that proteins fold thanks in large to the angles φ
and  ψ between the carbon and the neighboring atoms

• These angles can assume only a few values 
independently of each other

• Therefore each residue can have a configuration given 
by a pair of values for φ and ψ

• Assume both φ and ψ can assume 3 values and the 
protein is 100 residues long, then we have to examine 
9100 foldings!
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Other problems with greedy

• No agreement on how to compute the free energy of a 
folding, too many factors to consider

– Shape

– Size

– Polarity of molecules

– Strength of interactions of molecules, etc…

• Because of all these difficulties, other techniques have 
been developed, e.g. Protein Threading
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Similarity of protein sequences
• An early method for secondary structure prediction was based on 

the idea that similar sequences should have similar structures

– folding of A known
– B’s sequence is similar to A’s sequence
– Folding of B is similar to A’s

Not generally true!

• Similar proteins at the sequence level may have different secondary 
structures

• On the other hand, certain proteins that are very different at the 
sequence level are structurally related: different loops, similar cores

• Protein threading: fit a known structure to a sequence
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Protein threading
• We are given

– A protein sequence A with n amino acids ai

– A core structural model C, with m core segments, we have:

• The length ci of each core segment

• Core segments i and i+1 are connected by loop for which we know the 
maximum limax and minimum limin lengths

• Properties of each amino acid in C

– A score function f to evaluate a threading

• We want to find a best scoring set T = {t1, …, tm} of integers such 
that each ti indicates what amino acid from A occupies the first 
position from core segment i
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Illustration

The threading is an alignment between the sequence and the core 
structural model

If we ignore interactions between amino acids of different structures, 
while allowing variable-length loop regions, the problem can be 
solved by a standard dynamic programming technique

If we allow pairwise interactions, the problem becomes NP-hard

21 3

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20

T = {5, 8, 17}
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Approach

• We will allow pairwise interactions of amino 
acids

• We will solve the problem exactly with a 
standard technique used for handling NP-hard 
problems

• This technique is known as branch-and-bound
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Branch-and-Bound
• Assume we want to find the maximum f(s) among many solutions s

in the solution space

• First, it should be possible to separate the solution space into
subspaces according to some constraints [branch]

– e.g. given a solution space X we could partition it into X1 (all solutions 
that have a certain property) and X2 (all solutions that do not) 

• Second, for every partition X obtain an upper bound on the value of 
f(s) for every solution s ∈ X [bound]

• Assume we have f(s) for a given s. Now consider a subset X of the 
solution space with an upper bound u. If f(s) > u, then we can 
discard X.
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Some considerations

• The upper bound should be as close to the 
actual function value as possible, so that we can 
find the maximum faster than with a weaker 
upper bound

• The upper bound should also be efficient to 
compute

• Even if we speedup the process by discarding 
some subsets of the solution space, the worst 
case running time is still exponential

Saad Mneimneh

Finding the solution space

Every solution must satisfy:

1 + Σj<i(cj+ljmin) ≤ ti ≤ n+1 – Σj≥i(cj+ljmin) 

ti + ci + limin ≤ ti+1 ≤ ti + ci + limax

This implies that each ti ∈ [bi, ei] in every 
solution
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Illustration

A set of solutions is given by a collection of 
intervals, one for each of the m ti’s.

i

i-1

i+1

bi-1 bi ei-1 ei bi+1 ei+1
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Branch

Given a set of solutions: 

– choose a segment, say i

– choose a position ui inside the interval [bi, ei]

– Split the set into three sets in which the intervals for ti
will be:

• [bi, ui-1]

• [ui+1, ei]

• [ui]
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Bound

• Given a solution s, f(s) can be expressed as:

f(s) = Σi g1(i, ti) + ΣiΣj>i g2(i,j,ti,tj)

• Given a set X of solutions, a simple upper bound is:

maxs∈X f(s) = maxs∈X Σi [g1(i, ti) + Σj>i g2(i,j,ti,tj)]

≤ Σi [maxbi ≤x ≤ei g1(i, x) + Σj>i maxbi ≤y,z ≤ei g2(i,j,y,z)]

score for 
each segment

score for interactions
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Algorithm
X � all possible threadings
ub � upper bound for X

use a max priority queue with keys being the upper bounds
ENQUEUE(Q, (ub, X))

while (true) 
do (ub, X) � DEQUEUE(Q)

if |X| = 1 [the only remaining threading in the set]
then return X
else split(X)

for each new subset Xi from X
do ubi � upper bound for Xi

ENQUEUE(Q, (ubi, Xi))


