
1

Saad Mneimneh

Computat onal Biology

Lecture 21

Saad Mneimneh

Protein folding
• The goal is to determine the three-dimensional structure of a protein

based on its amino acid sequence

• Assumption: amino acid sequence completely and uniquely
determines the folding

– unfold a protein and then release it

– it immediately folds back to the three-dimensional structure it had
before, its “native” structure

• Protein secondary structures

– α-helices

– β-sheets

– Neither helices nor sheets, called loops

Saad Mneimneh

α-helix

• An α-helix is a simple helix having on average
10 residues (3 turns of the helix)

• Some helices can have as many as 40 residues

• Some amino acids appear more frequently on
helices than other amino acids, not a strong
enough fact to allow accurate prediction

2

Saad Mneimneh

β-sheet

• A β-sheet consists of binding between several sections
of the amino acid sequence

• Each participating section is called a β-strand and has
generally 5 to 10 residues

• The strands become adjacent to each other forming a
kind of twisted sheet

• Certain amino acids show a preference for being in a
β-sheet, but again these preferences are not so positive
to allow accurate prediction

Saad Mneimneh

Loop

• A loop is a section of the sequence that
connects the other two kinds of secondary
structure

• Loops are not regular structures both in shape
and size

• In general, loops are outside a folded protein,
whereas the other structures form the protein
core

Saad Mneimneh

A folded protein

α-helix

β-sheet

loop

3

Saad Mneimneh

Motifs and Domains

• A motif is a simple combination of a few secondary
structure that appear in several different proteins

– e.g. helix-loop-helix

• A motif might serve as a binding site to other molecules
or may have no role at all.

• A domain is a more complex combination of secondary
structures that have a very specific function; therefore, it
contains a binding site (called active site)

Saad Mneimneh

Protein folding

Given the amino acid sequence of a protein,
determine:

– where exactly all of its α-helices, β-sheets, and loops
are, and

– how they arrange themselves in motifs and domains

Saad Mneimneh

Greedy Approach

• Given enough chemical and physical information
about each amino acid it should be possible to
compute the free energy of a folding

• Enumerate all possible foldings, compute the
free energy of each

• Choose the folding with the minimum free
energy (assuming that such a folding is the
protein’s native structure)

4

Saad Mneimneh

Feasibility of greedy

• Recall that proteins fold thanks in large to the angles φ
and ψ between the carbon and the neighboring atoms

• These angles can assume only a few values
independently of each other

• Therefore each residue can have a configuration given
by a pair of values for φ and ψ

• Assume both φ and ψ can assume 3 values and the
protein is 100 residues long, then we have to examine
9100 foldings!

Saad Mneimneh

Other problems with greedy

• No agreement on how to compute the free energy of a
folding, too many factors to consider

– Shape

– Size

– Polarity of molecules

– Strength of interactions of molecules, etc…

• Because of all these difficulties, other techniques have
been developed, e.g. Protein Threading

Saad Mneimneh

Similarity of protein sequences
• An early method for secondary structure prediction was based on

the idea that similar sequences should have similar structures

– folding of A known
– B’s sequence is similar to A’s sequence
– Folding of B is similar to A’s

Not generally true!

• Similar proteins at the sequence level may have different secondary
structures

• On the other hand, certain proteins that are very different at the
sequence level are structurally related: different loops, similar cores

• Protein threading: fit a known structure to a sequence

5

Saad Mneimneh

Protein threading
• We are given

– A protein sequence A with n amino acids ai

– A core structural model C, with m core segments, we have:

• The length ci of each core segment

• Core segments i and i+1 are connected by loop for which we know the
maximum limax and minimum limin lengths

• Properties of each amino acid in C

– A score function f to evaluate a threading

• We want to find a best scoring set T = {t1, …, tm} of integers such
that each ti indicates what amino acid from A occupies the first
position from core segment i

Saad Mneimneh

Illustration

The threading is an alignment between the sequence and the core
structural model

If we ignore interactions between amino acids of different structures,
while allowing variable-length loop regions, the problem can be
solved by a standard dynamic programming technique

If we allow pairwise interactions, the problem becomes NP-hard

21 3

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20

T = {5, 8, 17}

Saad Mneimneh

Approach

• We will allow pairwise interactions of amino
acids

• We will solve the problem exactly with a
standard technique used for handling NP-hard
problems

• This technique is known as branch-and-bound

6

Saad Mneimneh

Branch-and-Bound
• Assume we want to find the maximum f(s) among many solutions s

in the solution space

• First, it should be possible to separate the solution space into
subspaces according to some constraints [branch]

– e.g. given a solution space X we could partition it into X1 (all solutions
that have a certain property) and X2 (all solutions that do not)

• Second, for every partition X obtain an upper bound on the value of
f(s) for every solution s ∈ X [bound]

• Assume we have f(s) for a given s. Now consider a subset X of the
solution space with an upper bound u. If f(s) > u, then we can
discard X.

Saad Mneimneh

Some considerations

• The upper bound should be as close to the
actual function value as possible, so that we can
find the maximum faster than with a weaker
upper bound

• The upper bound should also be efficient to
compute

• Even if we speedup the process by discarding
some subsets of the solution space, the worst
case running time is still exponential

Saad Mneimneh

Finding the solution space

Every solution must satisfy:

1 + Σj<i(cj+ljmin) ≤ ti ≤ n+1 – Σj≥i(cj+ljmin)

ti + ci + limin ≤ ti+1 ≤ ti + ci + limax

This implies that each ti ∈ [bi, ei] in every
solution

7

Saad Mneimneh

Illustration

A set of solutions is given by a collection of
intervals, one for each of the m ti’s.

i

i-1

i+1

bi-1 bi ei-1 ei bi+1 ei+1

Saad Mneimneh

Branch

Given a set of solutions:

– choose a segment, say i

– choose a position ui inside the interval [bi, ei]

– Split the set into three sets in which the intervals for ti
will be:

• [bi, ui-1]

• [ui+1, ei]

• [ui]

Saad Mneimneh

Bound

• Given a solution s, f(s) can be expressed as:

f(s) = Σi g1(i, ti) + ΣiΣj>i g2(i,j,ti,tj)

• Given a set X of solutions, a simple upper bound is:

maxs∈X f(s) = maxs∈X Σi [g1(i, ti) + Σj>i g2(i,j,ti,tj)]

≤ Σi [maxbi ≤x ≤ei g1(i, x) + Σj>i maxbi ≤y,z ≤ei g2(i,j,y,z)]

score for
each segment

score for interactions

8

Saad Mneimneh

Algorithm
X � all possible threadings
ub � upper bound for X

use a max priority queue with keys being the upper bounds
ENQUEUE(Q, (ub, X))

while (true)
do (ub, X) � DEQUEUE(Q)

if |X| = 1 [the only remaining threading in the set]
then return X
else split(X)

for each new subset Xi from X
do ubi � upper bound for Xi

ENQUEUE(Q, (ubi, Xi))

