
Computational Biology
Lecture 3: More problems, Global Alignment

Saad Mneimneh

DNA sequencing

Recall that in biological experiments only relatively short segments of the DNA can be investigated. To investigate
the structure of a long DNA molecule, the DNA is broken into smaller fragments that can be studied more easily by
biological experiments. For instance, physical mapping aims at ordering these fragments based on overlap information
obtained from hybridization experiments with a set of probes.

Shortest Superstring
In DNA sequencing, we have we deal with a more accurate overlap data for the fragments. For instance, in such an

experiment, we manage to sequence each of the individual fragments, i.e. obtain the sequence of nucleotides for each
fragment (there might be some experimental errors). Now we have map them back on the original DNA.

This leads to the following nice theoretical abstraction, the Shortest Superstring (a one that does not necessarily
capture reality): Given a set of strings s1, s2, ..., sk, find the shortest string s such that each si appears as a substring
of s.

Here’s an example. Consider the following strings (all binary strings of length 3): 000, 001, 010, 011, 100, 101, 110,
111. A trivial superstring would be 000 001 010 011 100 101 110 111. However a shortest superstring would be 0 0 0 1
1 1 0 1 0 0.

Intuitively speaking, the shortest superstring uses as much overlap as possible to construct the original DNA (because
it is the shortest string that contains all fragments). Is that a realistic thing to do? No, what if the DNA contains
repeats? Then the shortest superstring will not capture that. Furthermore, the model does not account for the possible
experimental errors.

The shortest superstring problem is NP-hard.

Sequencing by Hybridization
Although the sequencing problem can be solved in fast and efficient techniques these days, no such techniques existed

10 years ago. One method for DNA sequencing known as Sequencing by Hybridization was suggested by four biologists
independently in 1988. They suggested to build a DNA “ship” (called microarray) that would contain many small
fragments (probes) acting as the memory of the chip. Each fragment will give some information about the DNA
molecule at hand (by hybridization), and they will collectively solve the DNA sequencing problem. Of course no one
believed that this would work. Now microarrays constitute an industry.

Theoretically speaking, how can we use such a microarray to sequence the DNA. We can make the memory of the
ship constitute of all possible probes of length l. We ship will determine whether each of the probes hybridizes with
the DNA molecule. Note that every substring of length l in the original DNA will hybridize with some probe in the
microarray. Therefore, we collect information about all substrings of length l in the original DNA. This information can
be used to figure out the DNA sequence. We will call this problem, sequencing by hybridization, SBH.

Note that SBH is theoretically not much different than the shortest superstring problem described above. In fact it
is a special case where all strings have the same length l. Although the shortest superstring problem is NP-hard, SBH
can be solved efficiently as we will see later on.

Finding CG island

Given a DNA sequence we would like to find out which stretches on the DNA are genes, i.e. code for proteins. We
face the gene prediction problem. One approach to solving the Gene Prediction problem is by predicting what is known
as CG islands. CG is the most infrequently occurring dinucleotide in many genomes because CG tends to mutate to
TG by a process called methylation. However, CG tends to appear frequently around genes in areas called CG island.
Therefore, given the DNA, determining which areas are CG islands and which areas are not helps us to identify genes.
Theoretically, this problem is analogous to the following dishonest casino problem: At the casino, a biased coin is used
from time to time. The players cannot notice since the switch between the two coins happens with a small probability
p. Given a sequence of coin tosses that you collect over a period of time, can you find out when the biased coin was used
and when the fair coin was used? Where is the analogy here? Well, Given the DNA sequence, can you tell which parts
are CG islands and which parts are not? We will use a Hidden Markov Model to abstract this probabilistic setting and
answer questions such as the one above.

1

Similarity search

After sequencing, the biologist would have no idea about a newly sequenced gene. In a similarity search we are
interested in comparing the newly sequenced gene with others whose functionality is known. This will help us determine
the functionality of the newly sequence genes. Whether it is a genes, a protein, or just a DNA fragment, we can look at
the new sequence a string over some alphabet (A, G, C, T for instance in case of DNA). Using a distance metric we can
then determine to what extent the strings are alike. This is often called an edit distance. The edit distance is a measure
of how many operations are needed to transform one string into another. The operations can be insertion, deletion or
substitution of a symbol. Hence the edit distance is a natural measure of the similarity between the two strings, because
these are the three kinds of mutations that occur in DNA and protein sequences. We will see when we discuss alignment
algorithms that we can work with a more elaborate weighted edit distance, where each operation is assigned a weight,
or a score.

As for an example for now, if we decide to limit the mutations to just insertions and deletions and no substitutions
then the edit distance problem is equivalent to finding the longest common subsequence. Given two strings u == u1...um

and v = v1...vn a common subsequence of u and v of length k is a set of indices i1 < i2 < ... < ik and j1 < j2 < ... < jk

where uix = vjx for x = 1...k. Let LCS(u, v) denote the length of the longest common subsequence, then the minimum
number of insertions and deletions is clearly equal to m − LCS(u, v) + n − LCS(u, v) = m + n − 2LCS(u, v). This
problem is a basic case of a general problem known as Sequence Alignment.

Global Alignment

In order to detect similarities/differences between two sequences we align the two sequences on above the other. For
instance the following two sequences look very much alike: GACGGATTAG and GATCGGAATAG. The similarity
becomes more obvious when we align the sequences as follows:

GA-CGGATTAG
GATCGGAATAG

A gap was inserted in the first sequence to properly align the two sequences. Sequence alignment is the insertion of
gaps (or spaces) in arbitrary locations in the sequences so that they end up with the same size, provided that no gap in
one sequence should be aligned to a gap in the other.

We are interested in finding the best alignments between two sequences. But how do we formalize the notion of best
alignment? We will define a scoring scheme for the alignment. The best alignment is the alignment with the highest
score. Since our goal is to determine how similar two sequences are, our scoring scheme should reflect the concept of
similarity. A basic scoring scheme would be the following: two identical characters receive a score of +1, two different
characters receive a score of -1, and a character and a gap receive a score of -2. Then the score of our alignment will
be the sum of the individual scores in each column of the alignment. For example, the score of the alignment above is
+1(9)− 1(1)− 2(1) = 6. Here we choose to penalize a gap more than a mismatch because insertions and deletions are
less likely to occur in practice than substitutions.

In general, our scoring could be +m for a match, −s for a mismatch, and −d for a gap. The score of the alignment
will therefore be:

+m(#matches)− s(#mismatches)− d(#gaps)

The scoring scheme could be generalized even further. For instance, we could have a scoring matrix S where S(a, b) is
the score for matching character a with character b. The gap (or the space) symbol could be made part of that scoring
matrix; however, it is usually dealt with separately. As we will see later on, the score for a gap could depend on the
length of the gap. For instance two gap characters in a sequence could be scored differently than twice the score of a
single gap. The reason for such an approach is that gaps tend to occur in bunches, i.e. once we have a gap, we are likely
to encounter another one again, so we might want to penalize the start of the gap sequence more. This results in an
non-linear gap penalty function that cannot be captured by the scoring matrix S.

Now that we have an idea on how to score our alignment we go back to the question of how to compute the optimal
alignment. One possibility is by using a greedy algorithm which looks at all possible alignments and determines the
optimal one. However, the number of alignment grows exponentially with the sequence length resulting in a slow
algorithm.

We will make use of Dynamic programming to solve the problem. In dynamic programming we first find a solution
for the sub-problem and then store the results obtained and use them in the computation of larger sub-instances of the
problem. The dynamic programming algorithm is going to align prefixes of the two sequences x and y. By looking at
the optimal alignment of prefixes of x and y, we will be able to obtain the optimal alignment for larger prefixes. At the
end, we have the alignment between x and y.

2

In developing our dynamic programming algorithm, we will rely on two main observations:

First, using our scoring scheme of (+m,−s,−d), the score of an alignment (whether optimal or not) is additive. In
other terms, if the alignment can be split in two parts, and each part is scored separately, then the sum of the two scores
is equal to the score of the alignment. For instance, the alignment above can be split as follows:

GA- | CGGATTAG
GAT | CGGAATAG

The score of the alignment can be obtained as the sum of the scores of the two parts, i.e. (1+1-2) + (1+1+1+1-
1+1+1+1) = 0 + 6 = 6. This is true for any split of the alignment. The additive property implies that if the alignment
is optimal so are the alignments corresponding to the two parts (because otherwise we can obtain a better alignment).

Second, the optimal alignment between x1...xi and y1...yj can end with one of three possibilities.

• xi is aligned to yj

• xi is aligned with a gap

• yj is aligned with a gap

Using the additivity property mentioned above, the score of an optimal alignment ending in the first case will be
OPT (x1...xi−1, y1...yj−1) + s(xi, yj) where OPT (x1...xi−1) is the score of the optimal alignment between x1...xi−1 and
y1...yj−1, and s(xi, yj) = +m if xi = xj and s(xi, yj) = −s otherwise.

Similarly, the score of an optimal alignment ending in the second case will be OPT (x1...xi−1, y1...yj)− d. Finally, the
score of an optimal alignment ending in the third case will be OPT (x1...xi, y1...yj−1)− d.

Let A(i, j) be the score of the optimal alignment between x1...xi and y1...yj . Then according to the discussion above,
if we know A(i − 1, j − 1), A(i − 1, j), and A(i, j − 1), then we can determine A(i, j). How? Well, one the the three
possibilities above has to be true for the optimal alignment between x1...xi and y1...yj ; therefore, A(i, j) should be
computed as

A(i, j) = max[A(i− 1, j − 1) + s(xi, yj), A(i− 1, j)− d,A(i, j − 1)− d]

If we view A as a matrix, then an entry A(i, j) depends on three other entries as illustrated in Figure 1.

A(i-1,j-1)

A(i,j-1)

A(i-1,j)

A(i,j)

A(i-1,j-1)

A(i,j-1)

A(i-1,j)

A(i,j)

Figure 1: Computing A(i, j)

We can therefore carry the computation row by row from left to right (or column by column downward) until we
obtain the value for A(m,n) which will be the score of the optimal alignment between x1...xi and y1...yj . But how do
we start the process? We need some initialization. For instance A(1, 1) will require knowledge of A(0, 0), A(0, 1) and
A(1, 0). Well, A(0, 0) corresponds to aligning the two empty strings of x and y. Therefore it must have a score of zero.
A(i, 0) for i = 1...m corresponds to aligning the prefix x1...xi with the empty string of y, i.e. with gaps. Therefore,
A(i, 0) should be set to −d× i for i = 1...m. Similarly, A(0, j) should be set to −d× j for j = 1...n.

Figure 2 shows an example of aligning the sequence x = AAAC and y = AGC:
The question is now how to obtain the optimal alignment itself, not just its score. We will simply keep pointers in

the dynamic programming table to keep a trace on how we obtained each entry; therefore, for each A(i, j) we have a
pointer(s) to the entry(ies) that resulted in the value for A(i, j). At the end, we trace back on a path from A(m,n)
to A(0, 0). On a path, a diagonal pointer at A(i, j) signifies the alignment of xi with yj , a upward pointer at A(i, j)
signifies the alignment of xi with a gap, and a left pointer at A(i, j) signifies the alignment of yj with a gap.

Figure 3 shows how pointers are kept during the computation.
Figure 4 illustrates the final algorithm, known as the Needleman-Wunsch algorithm. The algorithm has O(mn) time

and space complexity since it involves only the computation of the matrix A and each entry requires a constant time to
compute (checking 3 other entries and setting at most three pointers).

3

A

A

A

C

0

-4

-6

-8

A

-1

-3

-5

G

-1

0

-2

-4

C

-3

-2

-1

-1

-2 -4 -6

-2 1A

A

A

C

0

-4

-6

-8

A

-1

-3

-5

G

-1

0

-2

-4

C

-3

-2

-1

-1

-2 -4 -6

-2 1

Figure 2: Example

A

A

A

C

0

-4

-6

-8

A

-1

-3

-5

G

-1

0

-2

-4

C

-3

-2

-1

-1

-2 -4 -6

-2 1A

A

A

C

0

-4

-6

-8

A

-1

-3

-5

G

-1

0

-2

-4

C

-3

-2

-1

-1

-2 -4 -6

-2 1

AAAC
AG-C

Figure 3: Keeping pointers

1. Initialization
A(0, 0) = 0
A(i, 0) = – i.d for i = 1…m
A(0, j) = – j.d for j = 1…n

2. Main Iteration (Aligning prefixes)
for each i = 1…m

for each j = 1…n
A(i – 1, j – 1) + s(xi, yj) [case 1]

A(i, j) = max A(i – 1, j) – d [case 2]
A(i, j – 1) – d [case 3]

Diag [case 1]
Ptr(i, j) = Up [case 2]

Left [case 3]

3. Termination
A(m, n) is the optimal score, and
from Ptr(m, n) can trace back optimal alignment.

Figure 4: The Needleman-Wunsch Algorithm

References

Pevzner P., Computational Molecular Biology, Chapter 1.
Setubal J., Meidanis, J., Introduction to Molecular Biology, Chapter 3.

4

