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Sequencing

• As before, DNA is cut into small ( ≈ 0.4KB) 
fragments and a clone library is formed.

• Biological experiments allow to read a certain 
number of these short fragments per 
experiment.

• Entire genome (≈ 4GB long) must be assembled 
from the knowledge of these short fragments.
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Shortest Superstring

• The simplest naive approximation of DNA 
sequencing, ignoring unavoidable experimental 
errors, is the following:

• Shortest Superstring Problem: Given a set of 
strings s1,…,sn, find the shortest string s such 
that each si appears as a substring of s.

• This problem is NP-hard.
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Shortest Superstring

• Set of strings:
{000,001,010,011,100,101,011,111}

• A trivial superstring: 
000 001 010 011 100 101 011 111

• A shortest superstring: 0 0 0 1 1 1 0 1 0 0
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Sequencing by Hybridization
• Although DNA sequencing is a fast and efficient procedure now, it was time 

consuming and hard 10 years ago.

• In 1988, 4 groups of biologist independently and simultaneously suggested 
a new approach called Sequencing by Hybridization (SBH).

• Build a DNA chip containing thousands of short DNA fragments (probes) 
working like the chip’s memory.

• Each probe will reveal some information about an unknown DNA fragment.

• All the pieces of information combined would solve the DNA sequencing.

• Of course, in 1988, no one believed that such a thing could work! Now, 
building DNA arrays with thousands of probes has become an industry.
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SBH
• Given a DNA fragment with an unknown sequence, a DNA array 

would provide its l-tuple composition, i.e. information about all 
substrings of length l contained in this fragment.

• SBH Problem: Reconstruct a string by its  l-tuple decomposition.

• Although conventional DNA sequencing and SBH are different 
approaches, computationally they are similar. SBH is a special 
instance of the Shortest Superstring problem when s1…sn represent 
all substrings of a fixed length.

• While the general Shortest Superstring problem in NP-hard, SBH 
can be solved efficiently.



3

Saad Mneimneh

Finding CG-islands
• The most infrequent dinucleotide in many genomes is CG (CG has 

tendency to mutate to TG).

• However, CG appears relatively frequently around genes in areas called 
CG-islands.

• How to define and find CG-islands in a genome?

• This is similar to the following analogy of the Casino: the dealer uses two 
coins: biased and unbiased. He switches coins with probability p. Given a 
sequence of coin tosses, can you find out when the biased coin was used?

• Why is that a good analogy? Because as we go along the genome, we can 
switch between two states: CG-island and non CG-island. Each state has 
different probability for the occurrence of CG. Given the genome, can you 
tell when you are in a CG island?

Saad Mneimneh

Similarity Search
• After sequencing, biologist have no idea about the function of the 

newly sequenced gene. 

• Hoping to find a clue, they compare it with previously sequenced
genes with known functionality.

• Edit distance: number of operations needed to transform one string 
into another, where operations are insertion of a symbol, deletion of 
a symbol, and substitution of a symbol.

• Since mutations in DNA can be represented by the above 
operations, the edit distance is a natural measure of similarity
between DNA fragments.

• Variations to the basic edit distance above are possible and lead to 
alignment algorithms.
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Sequence Alignment
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Similar Sequences

• These two look very much alike
GACGGATTAG

GATCGGAATAG

• Aligning them one above the other
GA-CGGATTAG

GATCGGAATAG
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Alignment

• Alignment: Insertion of gaps in arbitrary 
locations along the sequences so that they 
end up with the same size.

• No gap in one sequence should be aligned 
to a gap in the other.

• We want the best alignment, but what is 
best?
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Simple Scoring

• Two identical characters receive a score of + m
(match)

• Two different characters receive a score of – s
(mismatch)

• A character and a gap receive a score of – d
(gap)

• score = (#matches).m – (#mismatches).s – (#gaps).d
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Example

• m = 1
• s = 1
• d = 2

GA-CGGATTAG
GATCGGAATAG

score = +1(9) -1(1) -2(1) = 6

Why do we penalize gaps more? 
Insertions and Deletions are less likely than 
substitutions
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More General Scoring

The scoring scheme can be more general

– Given two sequences x and y, aligning xi and 
yj could add a score of s(xi,yj). Therefore, we 
have a scoring matrix.

– [later] Gap penalty is not linear, once you 
have a gap, it is likely to have another one so 
we should penalize the start of the gap more
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Greedy Algorithm

• To obtain the best alignment, try all 
possible alignments and find the best one

– Exponentially many alignments!
– How many? (homework)

• Greedy would result in a very slow 
algorithm
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Dynamic Programming

• Solving an instance of the problem by 
taking advantage of already computed 
solution for smaller instances of the 
problem.

• To find optimal alignment for sequences x
and y, compute optimal alignments for 
prefixes of x and y.
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Alignment is Additive

• The score of aligning 
x1..xm
y1..yn

is additive (with our particular scoring scheme)

• If the alignment is x1..xi   xi+1..xm
y1..yj   yj+1..yn

then the score is: 
score(x1..xi, y1..yj) + score(xi+1..xm, yj+1..yn)
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Optimal structure

Optimal solution => optimal solution of 
sub-problems

GA-CG GATTAG

GATCG GAATAG

cut optimal alignment anywhere

optimal optimal
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Dynamic programming

• Assume we want to align 
x1..xm
y1..yn

• Let A(i,j) be the score of optimally 
aligning the two prefixes 

x1..xi
y1..yj
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Dynamic Programming (cont.)

Three possible cases for 
aligning x1..xi and y1..yj

1. X1..Xi-1 xi
y1..yj-1 yj

2. X1..Xi-1 xi
y1..yj -

3. X1..Xi -

y1..yj-1 yj

A(i,j) = A(i – 1, j) – d

A(i,j) = A(i, j – 1) – d

m, if xi = yj

A(i,j) = A(i – 1, j – 1) + 
– s, if not
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Dynamic Programming (cont.)

Inductive step:
A(i, j – 1), A(i – 1, j), A(i – 1, j – 1) are correct

Then,
A(i – 1, j – 1) + s(xi, yj)

A(i, j) = max A(i – 1, j) – d
A(i, j – 1) – d

Where s(xi, yj) = m, if xi = yj;
– s, if not
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Illustration

A(i – 1,j – 1)

A(i,j – 1)

A(i – 1,j)

A(i,j)

A(m,n) will be the optimal score
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What Else?

• Base case

– A(0,0) = 0
– A(i,0) = – d.i i = 1…m
– A(0,j) = – d.j j = 1…n
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AAAC and AGC
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Obtaining Actual Alignment
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Obtaining Actual Alignment
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Needleman-Wunsch Algorithm
1. Initialization

A(0, 0)  =  0
A(i, 0) = – i.d for i = 1…m
A(0, j) = – j.d for j = 1…n

2. Main Iteration (Aligning prefixes)
for each    i = 1…m

for each    j = 1…n
A(i – 1, j – 1) + s(xi, yj)     [case 1] 

A(i, j)  =  max A(i – 1, j) – d [case 2]
A(i, j – 1) – d [case 3]

Diag [case 1]
Ptr(i, j)  = Up [case 2]

Left [case 3]

3. Termination 
A(m, n) is the optimal score, and
from Ptr(m, n) can trace back optimal alignment.
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Complexity

• Time
– O(mn)

• Space
– O(mn)


