
1

Saad Mneimneh

Computat onal Biology

Lecture 3

Saad Mneimneh

Sequencing

• As before, DNA is cut into small (≈ 0.4KB)
fragments and a clone library is formed.

• Biological experiments allow to read a certain
number of these short fragments per
experiment.

• Entire genome (≈ 4GB long) must be assembled
from the knowledge of these short fragments.

Saad Mneimneh

Shortest Superstring

• The simplest naive approximation of DNA
sequencing, ignoring unavoidable experimental
errors, is the following:

• Shortest Superstring Problem: Given a set of
strings s1,…,sn, find the shortest string s such
that each si appears as a substring of s.

• This problem is NP-hard.

2

Saad Mneimneh

Shortest Superstring

• Set of strings:
{000,001,010,011,100,101,011,111}

• A trivial superstring:
000 001 010 011 100 101 011 111

• A shortest superstring: 0 0 0 1 1 1 0 1 0 0

100

101

111

001

010

110

011

000

Saad Mneimneh

Sequencing by Hybridization
• Although DNA sequencing is a fast and efficient procedure now, it was time

consuming and hard 10 years ago.

• In 1988, 4 groups of biologist independently and simultaneously suggested
a new approach called Sequencing by Hybridization (SBH).

• Build a DNA chip containing thousands of short DNA fragments (probes)
working like the chip’s memory.

• Each probe will reveal some information about an unknown DNA fragment.

• All the pieces of information combined would solve the DNA sequencing.

• Of course, in 1988, no one believed that such a thing could work! Now,
building DNA arrays with thousands of probes has become an industry.

Saad Mneimneh

SBH
• Given a DNA fragment with an unknown sequence, a DNA array

would provide its l-tuple composition, i.e. information about all
substrings of length l contained in this fragment.

• SBH Problem: Reconstruct a string by its l-tuple decomposition.

• Although conventional DNA sequencing and SBH are different
approaches, computationally they are similar. SBH is a special
instance of the Shortest Superstring problem when s1…sn represent
all substrings of a fixed length.

• While the general Shortest Superstring problem in NP-hard, SBH
can be solved efficiently.

3

Saad Mneimneh

Finding CG-islands
• The most infrequent dinucleotide in many genomes is CG (CG has

tendency to mutate to TG).

• However, CG appears relatively frequently around genes in areas called
CG-islands.

• How to define and find CG-islands in a genome?

• This is similar to the following analogy of the Casino: the dealer uses two
coins: biased and unbiased. He switches coins with probability p. Given a
sequence of coin tosses, can you find out when the biased coin was used?

• Why is that a good analogy? Because as we go along the genome, we can
switch between two states: CG-island and non CG-island. Each state has
different probability for the occurrence of CG. Given the genome, can you
tell when you are in a CG island?

Saad Mneimneh

Similarity Search
• After sequencing, biologist have no idea about the function of the

newly sequenced gene.

• Hoping to find a clue, they compare it with previously sequenced
genes with known functionality.

• Edit distance: number of operations needed to transform one string
into another, where operations are insertion of a symbol, deletion of
a symbol, and substitution of a symbol.

• Since mutations in DNA can be represented by the above
operations, the edit distance is a natural measure of similarity
between DNA fragments.

• Variations to the basic edit distance above are possible and lead to
alignment algorithms.

Saad Mneimneh

Sequence Alignment

4

Saad Mneimneh

Similar Sequences

• These two look very much alike
GACGGATTAG

GATCGGAATAG

• Aligning them one above the other
GA-CGGATTAG

GATCGGAATAG

Saad Mneimneh

Alignment

• Alignment: Insertion of gaps in arbitrary
locations along the sequences so that they
end up with the same size.

• No gap in one sequence should be aligned
to a gap in the other.

• We want the best alignment, but what is
best?

Saad Mneimneh

Simple Scoring

• Two identical characters receive a score of + m
(match)

• Two different characters receive a score of – s
(mismatch)

• A character and a gap receive a score of – d
(gap)

• score = (#matches).m – (#mismatches).s – (#gaps).d

5

Saad Mneimneh

Example

• m = 1
• s = 1
• d = 2

GA-CGGATTAG
GATCGGAATAG

score = +1(9) -1(1) -2(1) = 6

Why do we penalize gaps more?
Insertions and Deletions are less likely than
substitutions

Saad Mneimneh

More General Scoring

The scoring scheme can be more general

– Given two sequences x and y, aligning xi and
yj could add a score of s(xi,yj). Therefore, we
have a scoring matrix.

– [later] Gap penalty is not linear, once you
have a gap, it is likely to have another one so
we should penalize the start of the gap more

Saad Mneimneh

Greedy Algorithm

• To obtain the best alignment, try all
possible alignments and find the best one

– Exponentially many alignments!
– How many? (homework)

• Greedy would result in a very slow
algorithm

6

Saad Mneimneh

Dynamic Programming

• Solving an instance of the problem by
taking advantage of already computed
solution for smaller instances of the
problem.

• To find optimal alignment for sequences x
and y, compute optimal alignments for
prefixes of x and y.

Saad Mneimneh

Alignment is Additive

• The score of aligning
x1..xm
y1..yn

is additive (with our particular scoring scheme)

• If the alignment is x1..xi xi+1..xm
y1..yj yj+1..yn

then the score is:
score(x1..xi, y1..yj) + score(xi+1..xm, yj+1..yn)

Saad Mneimneh

Optimal structure

Optimal solution => optimal solution of
sub-problems

GA-CG GATTAG

GATCG GAATAG

cut optimal alignment anywhere

optimal optimal

7

Saad Mneimneh

Dynamic programming

• Assume we want to align
x1..xm
y1..yn

• Let A(i,j) be the score of optimally
aligning the two prefixes

x1..xi
y1..yj

Saad Mneimneh

Dynamic Programming (cont.)

Three possible cases for
aligning x1..xi and y1..yj

1. X1..Xi-1 xi
y1..yj-1 yj

2. X1..Xi-1 xi
y1..yj -

3. X1..Xi -

y1..yj-1 yj

A(i,j) = A(i – 1, j) – d

A(i,j) = A(i, j – 1) – d

m, if xi = yj

A(i,j) = A(i – 1, j – 1) +
– s, if not

Saad Mneimneh

Dynamic Programming (cont.)

Inductive step:
A(i, j – 1), A(i – 1, j), A(i – 1, j – 1) are correct

Then,
A(i – 1, j – 1) + s(xi, yj)

A(i, j) = max A(i – 1, j) – d
A(i, j – 1) – d

Where s(xi, yj) = m, if xi = yj;
– s, if not

8

Saad Mneimneh

Illustration

A(i – 1,j – 1)

A(i,j – 1)

A(i – 1,j)

A(i,j)

A(m,n) will be the optimal score

Saad Mneimneh

What Else?

• Base case

– A(0,0) = 0
– A(i,0) = – d.i i = 1…m
– A(0,j) = – d.j j = 1…n

Saad Mneimneh

AAAC and AGC

A

A

A

C

0

-4

-6

-8

A

-1

-3

-5

G

-1

0

-2

-4

C

-3

-2

-1

-1

-2 -4 -6

-2 1

9

Saad Mneimneh

Obtaining Actual Alignment

A

A

A

C

0

-4

-6

-8

A

-1

-3

-5

G

-1

0

-2

-4

C

-3

-2

-1

-1

-2 -4 -6

-2 1

Saad Mneimneh

Obtaining Actual Alignment

A

A

A

C

0

-4

-6

-8

A

-1

-3

-5

G

-1

0

-2

-4

C

-3

-2

-1

-1

-2 -4 -6

-2 1

AAAC
AG-C

Saad Mneimneh

Needleman-Wunsch Algorithm
1. Initialization

A(0, 0) = 0
A(i, 0) = – i.d for i = 1…m
A(0, j) = – j.d for j = 1…n

2. Main Iteration (Aligning prefixes)
for each i = 1…m

for each j = 1…n
A(i – 1, j – 1) + s(xi, yj) [case 1]

A(i, j) = max A(i – 1, j) – d [case 2]
A(i, j – 1) – d [case 3]

Diag [case 1]
Ptr(i, j) = Up [case 2]

Left [case 3]

3. Termination
A(m, n) is the optimal score, and
from Ptr(m, n) can trace back optimal alignment.

10

Saad Mneimneh

Complexity

• Time
– O(mn)

• Space
– O(mn)

