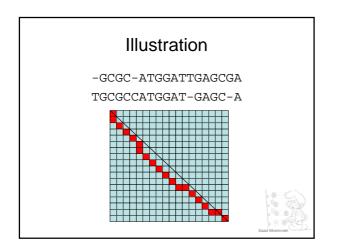
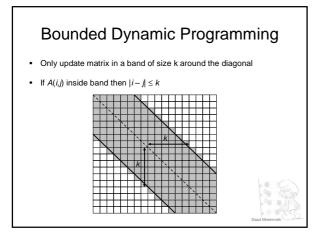
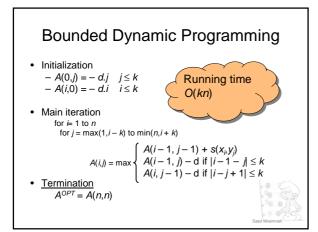


Similar Sequences

- If we believe that the two sequences are similar, then we can align them faster.
- For simplicity assume *m* = *n* (since they are similar).
- If *x* and *y* align perfectly, this corresponds to a diagonal in the *A* matrix.
- Therefore, we expect the alignment not to deviate a lot from the diagonal.

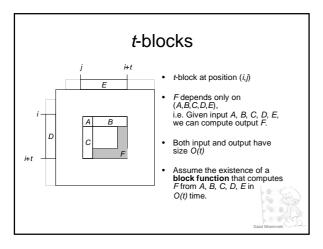


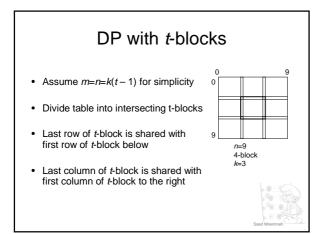


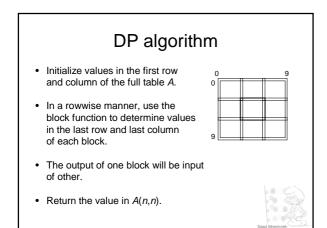


The 4 Russians Speedup (for speeding up DP)

- Partition the table into *t*-blocks (blocks of size *t*x*t*).
- Compute the values in the table one *t*-block at a time rather than one cell at a time.
- The goal is to spend only O(t) time per block, rather than $O(t^2)$.
- Achieve a factor of *t* speedup.







Running time analysis

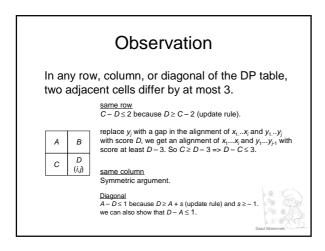
- There are n^2/t^2 t-blocks.
- The output for each *t*-block is obtained in *O*(*t*) time using the block function.
- Total time is O(n²/t)
- But how to make the block function O(t)?

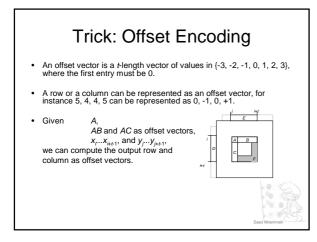
Block function

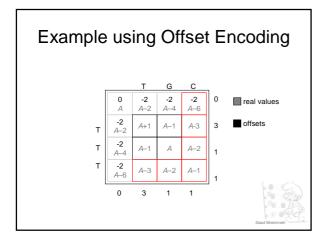
- Enumerate all possible inputs to the block function.
- For each input, pre-compute the resulting output (i.e. a row and a column) in $O(f^2)$
- Store the outputs indexed by the inputs.
- True running time of DP is $O(n^2/t)$ + time of pre-computation

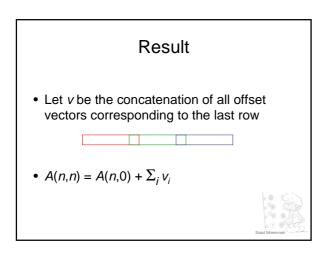
Pre-computing the block function Number of input choices to the block function is large! A t-length row (or column) can have around L'ar possible values

- where L: possible values for a cell, L >> n α : the size of the alphabet.
- So, we have $L^{2t}\alpha^{2t}$ possible inputs
- Need $L^{2t}\alpha^{2t}t^{2}$ time!







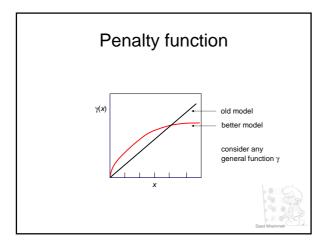


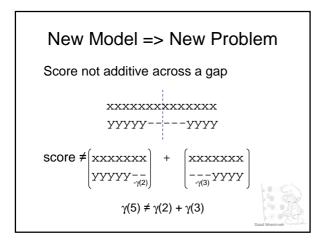
Time Analysis

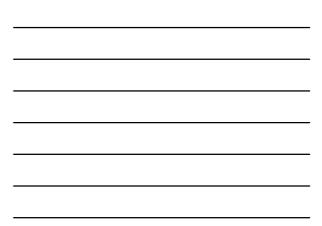
- Number of different inputs to block function is now $7^{2t}.4^{2t} = 28^{2t}$
- Time = $28^{2t} \cdot t^2$
- Let $t \approx 0.5\log_{28}n \Rightarrow time = O(n.\log^2 n)$
- Total = $O(n.\log^2 n + n^2/\log n)$

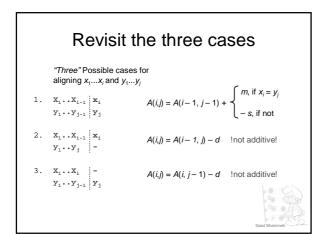
The 4 Russians V. L. Arlazarov, ← Only 1 Russian E. A. Dinic, M.A. Kronrod, I.A. Faradzev paper in 1970

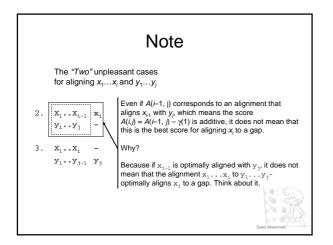
- So far, we assumed linear penalty
 γ(x) = dx
- This is not realistic because gaps occur in bunches
 - A gap of length k is more likely than k gaps of length
 1.
- Use a function that does not penalize additional gaps as much as the first gaps

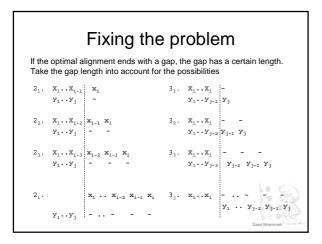


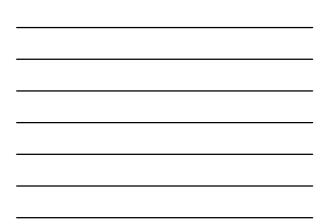




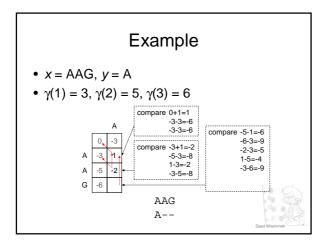


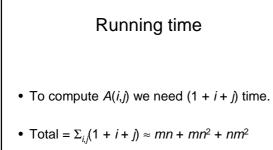






Update Rule
Needleman-Wunsch
$$A(i,j) = \max \begin{cases} A(i-1,j-1) + s \\ A(i-k,j) - \gamma(k) \text{ for } k = 1...i \\ A(i,j-k) - \gamma(k) \text{ for } k = 1...j \end{cases}$$
Initialization should satisfy γ .
Termination as before.





There is a catch!

- We did not assume anything about $\gamma(x)$.
- In fact, this new algorithm will not work correctly for any arbitrary γ(x).
- It has to satisfy $\gamma(x+1) \gamma(x) \leq \gamma(x) \gamma(x-1)$
- The book has a solution that does not require the above condition.

