
Computational Biology
Lecture 6: Affine gap penalty function, multiple sequence alignment

Saad Mneimneh

We saw earlier how we can use a concave gap penalty function γ, i.e. one that satisfies γ(x+1)−γ(x) ≤ γ(x)−γ(x−1),
as a more realistic model for penalizing gaps. This was at the expense of increasing the time complexity of our dynamic
programming algorithm. With a concave gap penalty function, the new DP algorithm requires O(mn2 + nm2) time, as
compared to the O(mn) time bound of previous algorithms. We will seek a solution that will bring us back to our old
time bound of O(mn) while still providing a good model for gap penalty.

Affine gap penalty function

The objective is to come up with a realistic gap penalty function that will not require the dynamic programming
algorithm to spend more than O(mn) time updating the table. Let us look then at the origin of the problem and why
the general gap penalty function fails to achieve that: The general penalty function can possible have a different penalty
for each additional gap. The algorithm has to check for all possible gap lengths. At a given position A(i, j) this is i + j
possibilities. This is what makes the algorithm spend cubic time for updating all entries.

We will approximate γ by a set of linear functions. For simplicity assume that we will approximate it using two
functions as illustrated below (this could be generalized to more than two).

γ(x)

x

affine model

previous model

e

1

d

γ(x)

x

affine model

previous model

e

1

d

Figure 1: Affine gap penalty function

The figure above suggests that we penalize the first gap differently, possibly more than the rest, then each subsequent
gap will be penalized linerarly. The gap penalty function will be

γ(x) = e + (x− 1)d, x ≥ 1

This is called the affine gap penalty model. If e >> d, which is usually the case, then this is still a concave function
and therefore a good approximation of the realistic setting. However, for the rest of this document, we do not impose
any constraints on d and e (concavity will not be a requirement).

What have we gained so far? Now the gap is either the opening of a larger gap or not. We only distinguish between
these two cases. Therefore, we have only two possibilities to check for. If we have an opening of the gap, we penalize it
by e; otherwise, we penalize as before by d. But now we have to be able to detect the opening of a gap.

To be able to detect the opening of a gap, we will explicitly distinguish between three kinds of alignments: alignments
that end with no gaps, alignments that end with a gap aligned with x, and alignments that end with a gap aligned with
y. For this purpose, we are going to define three types of blocks in an alignment:

• A: block containing one character in x aligned to one character in y

• B: block containing a maximal number of contiguous gaps aligned with x, thus a type B block cannot follow a
type B block.

• C: block containing a maximal number of contiguous gaps aligned with y, thus a type C block cannot follow a
type C block.

Therefore, an alignment can be divided into blocks (instead of columns as before) of three types A, B, and C. The
following is an example:

A|A|C|---|A|ATTCCG|A|C|T|AC
A|C|T|ACC|T|------|C|G|C|--

1

An important feature of the division above is that the score of the alignment becomes additive across blocks boundaries
(this is true regardless of the gap penalty function). Therefore, we can make our dynamic programming table maintain
three matrices for the three kinds of alignments mentioned above: alignments that end with a block of type A, alignments
that end with a block of type B, and alignments that end with a block of type C. Each entry in one of these three
matrices will now depend on previous entries in other matrices. For instance, the optimal score for an alignment of
x1...xi and y1...yj that ends with a gap aligned with x (defined as B(i, j)) is obtained by either making the gap an
opening gap, thus A(i− 1, j)− e or C(i− 1, j)− e, or making the gap a continuation of a previously opened gap, thus
B(i− 1, j)− d. Obviously, the maximum of those three is the optimal score for B(i, j).

More formally:

• A(i, j): optimal score for an alignment of x1...xi and y1...yj that ends with no gaps

• B(i, j): optimal score for an alignment of x1...xi and y1...yj that ends with a maximal gap aligned with x

• C(i, j): optimal score for an alignment of x1...xi and y1...yj that ends with a maximal gap aligned with y

Then our update rules become:

A(i, j) = max

A(i− 1, j − 1) + s(i, j)
B(i− 1, j − 1) + s(i, j)
C(i− 1, j − 1) + s(i, j)

B(i, j) = max

A(i− 1, j)− e different block, opening gap
B(i− 1, j)− d same block, continuing gap
C(i− 1, j)− e different block, opening gap

C(i, j) = max

A(i, j − 1)− e different block, opening gap
B(i, j − 1)− e different block, opening gap
C(i, j − 1)− d same block, continuing gap

Special care has to be made for the initial conditions of the three matrices. A(0, 0) = 0. A(i, 0) = −∞ for i = 1...m
and A(0, j) = −∞ for j = 1...n. The reason for this is that A(i, 0) and A(0, j) do not correspond to alignments that
end with type A block, and hence we have to make sure they do not affect the computattion. Similarly, B(0, 0) = 0,
B(i, 0) = −e− (i− 1)d, and B(0, j) = −∞. Finally, C(0, 0) = 0, C(i, 0) = −∞, and C(0, j) = −e− (j − 1)d.

The trace back pointers are kept as before, except that now they can jump from one matrix to another and we start
from max(A(m, n), B(m,n), C(m,n)).

We can simplify the above algorithm a little bit. Note that the following two types of alignments cannot be optimal
if s < d + e.

...-x...

...y-...

...x-...

...-y...

This is because if s < d + e, then the penalty for a mismatch is less then the penalty of two gaps and the two above
alignments are not optimal. In other words, a type C block cannot follow a type B block and viceversa. Therefore, if
s ≤ d + e we can disregard updating B using C or C using B. As a result, if s ≤ d + e, the third line in the update for
B(i, j) can be ignored, and the second line in the updated for C(i, j) can be ignored.

Multiple sequence alignment

The objective is now to generalize what we have seen so far to multiple sequences. Therefore, we need to align k
sequences in the optimal way. But what is optimal now? Let us assume for the rest of this document that the score is
additive, and hence, the score of an alignment is the sum of scores of each column in the alignment. We have now k
characters in each column, as opposed to just 2. Our scoring function will have to takes k arguments now. This will be
a complicated function to build. We would like to still use the scoring function for two characters to score the whole
column.

One famous scoring shceme is the sum of pairs score score, SP−score, which consists of scoring every pair of sequences
separately and adding up the scores. Given two sequences si and sj (note that the subscript now refers to the sequence

2

but not a character in the sequence), define the induced alignment of si and sj as the alignment obtained by isolating
both sequences from the multiple alignment and ignoring all columns with all gaps. Let scoreij be the score of the
induced alignment of si and sj , the the total score of the multiple alignment is

∑
i<j scoreij .

Alternatively, one could look at each column of the multiple alignment and compute the score of the column separately
(assuming additivity) as the sum of scores of every pair of characters in that column. In this case, we need to define
s(−,−), the score of a gap aligned with a gap. This scenario is now possible since we have k sequences and hence we
can have up to k − 1 gaps in a column. We therefore define s(−,−) = 0 to be consistent with the score of induced
alignments. In other words, if s(−,−) = 0, then

∑

l

SP − scorel =
∑

i<j

scoreij

where SP − scorel is the sum of pairs score of column l.
Here’s an example: If we have a column [I,−, I, V], then the score will be

SP − score(I,−, I, V) = s(I,−) + s(I, I) + s(I, V) + s(−, I) + s(−, V) + s(I, V)

Note that the SP − score is independent of the order of characters in a column (which is nice).
An important thing to realize is that the induced alignment between a pair of sequences to is not necessarily an

optimal one. The following example shows how to compute the SP − score and illustrates a case where the induced
alignment is not optimal.

s1= ATG, s2 = ATG, s3 = A, s4 = T

for the multiple alignment:

ATG
ATG
A--
-T-

The score is:

SP-score = SP-score(A,A,A,-) + SP-score(T,T,-,T) + SP-score(G,G,-,-)

Alternatively, using induced alignments:

SP-Score = score(ATG, ATG) + score(ATG, A--) + score(ATG, -T-)
+ score(ATG, A--) + score(ATG, -T-) + score(A-, -T)
= 3 -3 -3 -3 -3 -4 = -13

Note that the induced alignment for s3 and s4 is:

A-
-T

which is not the optimal alignment for these two sequences.

Multiple sequence alignment can be solved using the same dynamic programming formulation as before.
We have now k sequences of length ni each, i = 1...k. Therefore we need a k dimentional array A of length ni + 1

in each dimension (recall for the case of two sequences of length m and n we need an array of size (m + 1) × (n + 1)).
Therefore, A requires now O(nk) space.

A(i1, ..., ik) holds the score of the optimal alignment of s11 ...s1i1
, ..., sk1 ...skik

.
The problem now is that A(i, j) depends on 2k − 1 other entries (note that k = 2 ⇒ A(i, j) depends on 3 entries,

namely A(i− 1, j − 1), A(i, j − 1), and A(i− 1, j)). To see this, let us look at the simple case of two sequences. For two
sequences x and y, A(i, j) can end in 3 different ways, namely xi aligned with xj , xi aligned with a gap, or yj aligned
with a gap. In other words, all possible ways of having gaps at the end, including no gaps at all, and excluding the
possibility of having gaps only. Similarly, with k sequences, we can have any combination of gaps at the end, excluding
the possibility of gaps only. These are 2k − 1 possibilities. To think of it in another way, consider a vector of length k

3

A(i1, i2, i3)A(i1, i2, i3)

A(i1, i2, i3 – 1) 001
A(i1, i2 – 1, i3) 010
A(i1, i2 – 1, i3 – 1) 011
A(i1 – 1, i2, i3) 100
A(i1 – 1, i2, i3 – 1) 101
A(i1 – 1, i2 – 1, i3) 110
A(i1 – 1, i2 – 1, i3 – 1) 111

Figure 2: 2k − 1 dependencies

of zeros and ones where zero denotes a gap, then we can have all possible vectors except for 000....0. Again, these are
2k − 1 vectors. The figure below illustrates for k = 3 the 2k − 1 = 7 dependencies of A(i1, i2, i3).

Since the SP − score of a column requires O(k2) time to computes (looking at all pairs), the running time of the
dynamic programming algorithm will be O(2kk2nk).

The exponential time bound for the dynamic programming algorithm is not a surprise. The problem of multiple
sequence alignment with SP − score is known to be NP-complete. Therefore, no polynomial time algorithm is known
for the problem. For this reason, we will look at heuristic algorithms for the problem. One of the famous heuristics is
Star alignment, which is a special case of a more general kind of alignments knows as tree alignments. We will describe
what a tree alignment is next.

Tree alignment: Given a tree with k nodes representing k sequences s1,...,sk, a multiple alignment of the k sequences
consistent with the tree is such that the induced alignment between si and sj is optimal if there is an edge (si, sj).

s1 = AXZ s2 = AXZ

s3 = AXXZ

s4 = AYZ

s5 = AYXYZ

s1 = AXZ s2 = AXZ

s3 = AXXZ

s4 = AYZ

s5 = AYXYZ

s1 A X - - Z
s2 A - X - Z
s3 A X X - Z
s4 A Y - - Z
s5 A y X X Z

Figure 3: Tree alignment

In the example above, the induced alignment of s1 and s3 is optimal. The induced alignment of s2 and s4, for instance,
is not.

Given a tree, is it always possible to produce an alignment consistent with the tree? The answer is yes. Here’s the
algorithm to produce such an alignment.

• (1) Pick si and sj such that (si, sj) is an edge in the tree and align them optimally. Let S = {si, sj}, the set of
aligned sequences.

• (2) Pick sk 6∈ S and sl ∈ S such that (sk, sl) is an edge in the tree and align them optimally.

• (3) Once a gap always a gap: For each gap added to sl in this alignment, add a corresponding gap to all
sequences in S. For each gap already in sl, add a corresponding gap in sk (if needed).

• (4) S = S ∪ {sk}
• (5) Repeat from (2) until all sequences are in S.

The proof that the algorithm above works is by induction on the number of sequences in S. The base case is when
we have two sequences that are optimally aligned and corresponding to some edge (si, sj). The inductive step is when
a sequence sk 6∈ S is added and aligned optimally with sl ∈ S for edge (sk, sl) (for a given sk, there is only one such
sl, since the edges belong to a tree). Using the once a gap always a gap strategy, the score of induced alignments
for sequences aleardy in S in unchanged (because s(−,−) = 0). For the same reason, the score of the new optimal
alignment of sk and sl is unchanged. Therefore, we obtain a new set S = S ∪ {sk} with one additional sequence and a
multiple alignment that is still consistent with the tree.

4

What is the running time of the tree alignment algorithm? Well, we perform k − 1 optimal alignments (the number
of edges in the tree) each taking O(n2) time. Moreover, every time we add a new sequence to the alignment, we have to
update the gaps for all sequences in the alignment (this is O(k) sequences), using once a gap always a gap strategy.
This gap update will therefore take O(kl) time for each added sequence, where l is the length of the multiple alignment.
As a result, the total running time is O(kn2 + k2l).

The following figure illustrates the steps of the algorithm on the example presented earlier.

(s1,s3) (s2,s3) Join
AX-Z A-XZ AXXZ
AXXZ AXXZ AX-Z

A-XZ

(s3,s4) Join
AXXZ AXXZ
AY-Z AX-Z

A-XZ
AY-Z

(s4,s5) Join
AY--Z AXX-Z
AYXXZ AX--Z

A-X-Z
AY--Z
AYXXZ

s1 = AXZ s2 = AXZ

s3 = AXXZ

s4 = AYZ

s5 = AYXYZ

s1 = AXZ s2 = AXZ

s3 = AXXZ

s4 = AYZ

s5 = AYXYZ

Figure 4: Performing the tree alignment algorithm

Now back to Star alignment. The Star alignment is just a special case when the tree is a star. One sequence will be
the center of the star and every other sequence is connceted to the center by an edge.

The question of course is, given the sequences s1, ..., sk, which one to choose to be the center of the star? The only
guarantee of Star alignment is to produce a multiple alignment in which the induced alignment of any sequence with the
center sequence is optimal. Therefore, as a heuristic, Start alignment chooses the center of the star to be the sequences
si that maximizes

Mi =
∑

j

OPT (si, sj)

where OPT denotes the optimal score of aligning two sequences.
The running time of Start alignment is the same for the general tree alignment except that we have to account

for finding argmaxiMi. This can be done by performing all pairwise alignments and choosing the sequence si that
maximizes Mi. Therefore, the running time of Star alignment is O(k2n2 + k2l).

Star alignment with the above heuristic has some nice properties in terms of approximating the optimal SP − score.
The score of the Star alignment will be within a constant factor of the optimal SP − score, under some special pairwise
schoring schemes.

References

Setubal J., Meidanis, J., Introduction to Molecular Biology, Chapter 3.
Gusfield D., Algorithms on Strings, Trees, and Sequences, Chapter 14.

5

