General gap penalty function

• Using a general γ gives an $O(mn^2 + nm^2)$ algorithm.

• Can we still achieve our old $O(mn)$ time bound?

What was the problem?

• For each additional gap, we have a different additional score.

• We had to accommodate for every possible gap length.

• Restrict the possibilities. Use an affine gap function to approximate the general one.
Affine gap penalty function

\[\gamma(x) = e + d(x - 1) \quad x \geq 1. \]

How can this help

- Any gap length greater than one is penalized linearly.
- Need to distinguish only between 1 and more than 1.
- \(d = 1 \)
 - penalize by \(1 \).
- \(d > 1 \)
 - penalize linearly by increments of \(d \).
- Use more than one matrix to detect that, depends on where we stopped last time.

Looking for additivity

- Break the alignment into 3 kinds of blocks:
 - Two aligned characters
 - Consecutive gaps aligned with \(x \)
 - Consecutive gaps aligned with \(y \)

\[
A|A|C|---|A|A|\text{T|C|G|G|T|A|C|G|G|C|}\n\]

- Score is additive across block boundaries, this is true regardless of the gap penalty function.
Methodology

- Instead of reasoning on the last column in an alignment, we reason on the last block.
- For each pair \((i, j) \), keep the best score for \(x_1...x_i \) and \(y_1...y_j \) that end with a particular block.
- We need three matrices
 - \(A \) for block type 1
 - \(B \) for block type 2, gaps aligned with \(x \)
 - \(C \) for block type 3, gaps aligned with \(y \)

Modified Needleman-Wunsch for affine gaps

\[
\begin{align*}
A(i, j) &= \sigma(i, j) + \max \begin{cases}
A(i-1, j-1) \quad & A(i, j) \text{ is the start of block of type 1, so it aligns } x_i \text{ with } y_j \text{ no matter what.} \\
B(i-1, j-1) \quad & B \text{ for block type 2, only need to vary } i. \text{ First gap penalized } -d, \\
C(i-1, j-1) \quad & \text{i.e. after block type 1 and 3, otherwise } -d.
\end{cases} \\
B(i, j) &= \max \begin{cases}
A(i, j-1) - e \quad & C \text{ for block type 3, only need to vary } j. \text{ First gap penalized } -e, \\
B(i, j-1) - d \quad & \text{i.e. after block type 1 and 2, otherwise } -d.
\end{cases} \\
C(i, j) &= \max \begin{cases}
A(i-1, j) - e \quad & \\
B(i-1, j) - d \quad & \end{cases}
\end{align*}
\]

Initialization

\[
\begin{align*}
A(0, 0) &= 0 \\
A(i, 0) &= ? - \infty \text{ not block type 1} \\
A(0, j) &= ? - \infty \\
B(0, 0) &= ? - \infty \text{ not block type 2} \\
B(i, 0) &= -e - d(i - 1) \quad 1 \leq i \leq m \\
C(0, 0) &= ? - e - d(j - 1) \quad 1 \leq j \leq n \\
C(i, 0) &= ? - \infty \text{ not block type 3}
\end{align*}
\]
Simplification

\[
\begin{align*}
A(i, j) &= s(i, j) + \max \left\{ A(i-1, j-1), B(i-1, j-1) \right\} \\
B(i, j) &= \max \left\{ A(i-1, j) - e, B(i-1, j) - d, C(i-1, j) \right\} \\
C(i, j) &= \max \left\{ A(i, j-1) - e, B(i, j-1) - d, C(i, j-1) \right\}
\end{align*}
\]

Multiple sequence alignment

- Align \(k \) sequences in the best way
- What is the score (assume additive)?
 - In each column, we have \(k \) characters.
 - Scoring function takes \(k \) arguments.
 - Need \(O(2^k) \) entries (at least gap non-gap)!
- Practical scoring function: Sum of Pairs (SP-score)
 - Let \(s(x, y) \) be the score of the induced alignment for sequences \(x \) and \(y \), i.e., the score of the alignment obtained by isolating \(x \) and \(y \) and ignoring columns with only gaps.
 - SP-score = \(\sum_{x \neq y} s(x, y) \)

SP-score function

- Example: three sequences \(x, y, \) and \(z \)
 - \(SP = s(x, y) + s(x, z) + s(y, z) \)
- Nice properties
 - This is independent of the order of characters in a column
 - It rewards similarities and penalizes differences.
- Assume additive
 - \(s(x, y) = \Sigma s(x, y), \quad s(-) = 0 \)
Example

- \(w \) = ATG, \(x \) = ATG, \(y \) = A, \(z \) = T

\[
\begin{array}{c|c|c}
ATG & ATG & \vspace{1ex} \\
A & - & A \\
\vspace{1ex} & T & - \\
\end{array}
\]

- Score = 3 - 3 - 3 - 3 - 4 = -13

- The induced alignment between a pair of sequences is not necessarily an optimal one, e.g. \(y \) and \(z \).

Dynamic Programming

- \(k \) sequences of length \(n_i \) each.

- \(k \) dimensional array \(A \) of length \(n_i + 1 \) in each direction.

- \(A(i, \ldots, j) \) holds the score of the optimal alignment involving \(x_i[1\ldots i] \), \(\ldots \), \(x_j[1\ldots j] \).

- A now requires \(O(n^k) \) space.

Dynamic Programming (cont.)

- Now each entry in \(A \) depends on \(2^n - 1 \) entries (note: \(k = 2 \rightarrow 3 \) (why)?)
 - e.g. \(A(i, j, \ldots, j) \) depends on:
 - \(A(i, j, \ldots, j) = 001 \)
 - \(A(i, j, \ldots, j) = 010 \)
 - \(A(i, j, \ldots, j) = 011 \)
 - \(A(i, j, \ldots, j) = 100 \)
 - \(A(i, j, \ldots, j) = 101 \)
 - \(A(i, j, \ldots, j) = 110 \)
 - \(A(i, j, \ldots, j) = 111 \)

- Computing the SP-score in each case requires \(O(k^2) \) time.

- Total running time is \(O(k^2n^k) \).
Heuristic: Star Alignment

- Star alignment is a special case of tree alignments.
- What is a tree alignment?
- Given a tree with \(k \) nodes representing \(k \) sequences, a multiple alignment of the \(k \) sequences consistent with the tree is such that the induced alignment between \(x_i \) and \(x_j \) is optimal if there is an edge \((x_i, x_j)\).

Example

A multiple alignment consistent with the tree:

- \(s_1 \): A X X A Z
- \(s_2 \): A X Z A Z
- \(s_3 \): A X X A Z
- \(s_4 \): A Y X A Z
- \(s_5 \): A y X X Z

Tree alignment

- Given a tree, is it always possible to obtain a multiple alignment consistent with the tree?
 - YES
- How?
Algorithm: step 1

- Pick x_i and x_j such that (x_i, x_j) is an edge and align them optimally.
- set $X = \{x_i, x_j\}$, the set of aligned sequences.

Algorithm: step 2

- Pick $x_i \notin X$ and $x_j \in X$ such that (x_i, x_j) is an edge.
- Align x_i and x_j optimally.
- **Once a gap always a gap**: For each gap added to x_j in this alignment, add a corresponding gap to sequences in X. For each gap already in x_j add a corresponding gap in x_i (if needed).
- $X = X \cup \{x_i\}$

Algorithm: step 3

- Repeat step 2 until all sequences are in X.
Example revisited

Star Alignment

- Special case where tree is a star
- Which sequence should be the center of the star?
- The sequence x_i such that $M = \sum_{j \in \mathcal{I}} \text{OPT}(x, x_j)$ is maximized.

Star alignment algorithm

- Pick x to maximize $M = \sum_{j \in \mathcal{I}} \text{OPT}(x, x_j)$
- Find the optimal alignments between x and all x_i.
- Join the alignments using once a gap always a gap technique.
- Running time = $O(\mathcal{K}^2 \mathcal{P})$ for alignments + $O(\mathcal{K}L)$ for gap updates, where L is the length of the alignment and each time a sequence is joined, at most L sequences of length at most L must be updated $\Rightarrow O(k,kL) = O(kL)$
Example

$x_1 = ATGECATTT$
$x_2 = ATGGECCATT$
$x_3 = ATCCAAATTT$
$x_4 = ATCTTCCTTT$
$x_5 = ACTGACC$

x_5 maximizes N

$x_1, ATGECATTT$
$x_2, ATGGECCATT$
$x_3, ATCCAAATTT$
$x_4, ATCTTCCTTT$
$x_5, ACTGACC$