
Computational Biology
Lecture 8: Substitution matrices

Saad Mneimneh

As we have introduced last time, simple scoring schemes like +1 for a match, -1 for a mismatch and -2 for a gap are
not justifiable biologically, especially for amino acid sequences (proteins). Instead, more elaborated scoring functions
are used. These scores are usually obtained as a result of analyzing chemical properties and statistical data for amino
acids and DNA sequences.

For example, it is known that same size amino acids are more likely to be substituted by one another. Similarly,
amino acids with same affinity to water are likely to serve the same purpose in some cases. On the other hand, some
mutations are not acceptable (may lead to demise of the organism). PAM and BLOSUM matrices are amongst results
of such analysis. We will see the techniques through which PAM and BLOSUM matrices are obtained.

Substritution matrices

Chemical properties of amino acids govern how the amino acids substitue one another. In principle, a substritution
matrix s, where sij is used to score aligning character i with character j, should reflect the probability of two characters
substituing one another. The question is how to build such a probability matrix that closely maps reality? Different
strategies result in different matrices but the central idea is the same. If we go back to the concept of a high scoring
segment pair, theory tells us that the alignment (ungapped) given by such a segment is governed by a limiting distribution
such that

qij = pipje
λsij

where:

• s is the subsitution matrix used

• qij is the probability of observing character i aligned with character j

• pi is the probability of occurrence of character i

Therefore,

sij =
1
λ

ln
qij

pipj

This formula for sij suggests a way to constrcut the matrix s. If high scoring alignments are to be real, {qij} represent
the desired probabilities of substitions, while {pi} represent the background probabilities of occurrence. By observing
related families of sequences, one could estimate q and p and hence obtain the matrix s by using some scaling factor λ.
Note that

λ
∑

i,j

pipjsij =
∑

i,j

pipj ln
qij

pipj
=

∑

i,j

pij ln
qij

pij

Information theory tells us that the above sum is strictly less than 0 if p 6= q, which is a desired property. Also, note
that the score S′ in bits of a given segment (see previous lecture) is

S′ = log
eλS

K

Since S is a sum of terms of the form 1
λ ln qij

pipj
, eλS is a product of terms of the form qij

pipj
. Therefore, S′ reflect the log

likelihood of observing the alignment due to substitution (governed probabilistically by q) relative to simply by chance
(governed probabilistically by p). Division by the constant K adjusts the score to account for the rate of observing
maximal scoring segments as described in the previous lecture.

1



Here’s another intuitive approach that justifies the above scheme. To construct a substitution matrix to score protein
alignments, a family of proteins can be considered, and a multiple alignment of all the protein sequences in the family
is obtained. Again, we are considering alignments with no gaps; therefore, we assume sequences have the same length
(a valid assumption if they are related) and, therefore, the multiple alignment is trivial.

• for any pair of amino acids i and j we need qij , the probability of observing i aligned with j (which is same as
qji), and

• pi, the probability of observing an i.

The question is, in an alignment (ungapped) of sequences x and y that aligns two of their amino acids i and j, did
this happen by chance or was indeed because of a mutation from i to j or vice versa? To capture this complementary
behaviors, we consider two models:

• M , where x and y are related and obtained according to the joint probabilities qij , and

• R, where x and y are unrelated and obtained independently at random according to the individual probabilities
pi and pj .

Considering this, now the score is the likelihood that the sequences are related compared relative to them being
unrelated. This is called the odds ratio and is mathematically expressed as:

score(x, y) =
P (x, y|M)
P (x, y|R)

=
∏

i qxiyi∏
i pxi

∏
i pyi

.

This formula says that the score of the (ungapped) alignment is the probability that the symbols of x and y are
aligned because they are related, relative to the probability of their symbols being aligned just by chance.

For two aligned amino acids i and j, if we take i’s point of view, what is the probability to see a j on the other side?
Well, this is the probability that an i mutated into a j, p(i → j). However, there is a mere chance of pj for a random
occurence of a j as well. Hence, the probability ratio p(i→j)

pj
reflects how much i believes that this j is related to it.

Now, since qij = pipj|i = pip(i → j) (the probability of observing an i and its mutated form), we can also express the
likelihood as:

qij

pipj
=

p(i → j)
pj

.
By doing this for every pair of aligned symbols in the alignment and finding the product of the terms, we obtain the

formula above, which reflect how much we believe that the two entire sequences are related.
In all the alignment algorithms we have seen so far, we relied on the fact that the score is additive, and this was a

key property for the dynamic programming to work. In this case - when the score is computed as
∏

i,j
qxiyi

pxi
pyi

- it is

multiplicative. In order to make it additive we can take the log and compute: log
∏

i,j
qxiyi

pxi
pyi

=
∑

i,j log qxiyi

pxi
pyi

. This is
called the log-odds ratio. Therefore, the values making up the sum will be the individual scores found in the matrix,
hence sij = log qij

pipj
up to some scaling factor.

Note that this is symmetric, so scoring i aligned with j is the same as scoring j aligned with i, hence, the direction
of the alignment is not important (but one could in principle make a distinction if needed).

Now the important question: how to compute pi, pj , and qij? We’re going to look at two ways of computing this:
PAM and BLOSUM matrices.

PAM (Point Accepted Mutations) matrices

PAM stands for Point Accepted Mutations. An accepted mutation is defined as a mutation that was positively selected
by the environment and did not caused the demise of the organism. A PAM matrix M holds the probability of i being
replaced by j in a certain evolutionary time period. The longer the evolutionary period of time, the more difficult it is
to determine the correct values. The reason being that i could mutate several times before becoming a j, and it will be
hard to capture all these intermediate mutations, since we only observe i and j. What we are going to do is look over
mutations that occurred in a relatively short evolutionary period of time. One unit of evolution is defined to be the
amount of evolution that changes, on the average, 1 in 100 amino acids. Considering this unit, a 1-PAM matrix is first
computed. Using this as a starting point, a k-PAM matrix can be generated from the 1-PAM matrix.

For a 1-PAM matrix M , Mij is going to be p(i → j) scaled by a factor, such that the expected number of mutations
is 0.01; in other words it is the same as having the probability of 1 in 100 for a mutation to occur. The computational
steps that lead to the 1-PAM matrix are:

2



• Compute pi for every i.

• Compute p(i → j) for every pair i and j and let Mij = p(i → j).

• Scale M such that the expected number of mutations∑
i pi(1−Mii) is 0.01.

• Use sij = 10 log10
Mij

pj
to obtain the additive scores. sij is rounded to an integer and here, the scaling factor 10 is

used just to provide a better integer approximation.

Next we’ll take a closer look at each of these steps. Let the frequency count fij be the number of times i is aligned
with j counting both directions. Then, let the number of occurrences of i, fi =

∑
j fij , and the count of all characters

f =
∑

i fi. Now, we can estimate pij = fij

f , whose meaning is simply the rate at which i was found to be aligned with
j. Similarly, the rate of finding an occurence of i is pi = fi

f .
Now, having both pij and pi determined, the elements of the matrix M are being computed as: Mij = p(i → j) = pij

pi
.

M is indeed a probability matrix, and this can be proved by noting that
∑

j Mij = 1.
To illustrate this step of computing a matrix M , let’s have a quick example. Let the alignment be:

A B
A A

In this case, the frequencies are:

fAB = 1
fBA = 1
fAA = 2
fA =

∑
X fAX = fAB + fAA = 3

fB =
∑

X fBX = fBA = 1
f =

∑
X fX = 4

hence the estimated probabilities:

pAB = fAB

f = 1
4

pBA = fBA

f = 1
4

pAA = fAA

f = 1
2

pA = fA

f = 3
4

pB = fB

f = 1
4

p(A → B) = pAB

pA
= 1

3

p(B → A) = pBA

pB
= 1

The matrix M will be:

M =
[

2
3

1
3

1 0

]

The expected number of mutations is

∑

X

pX(1−MXX) = pA(1−MAA) + pB(1−MBB) =
3
4
(1− 2

3
) +

1
4
(1− 0) = 0.5 = 50%

The next step is the scaling of M such that it is consistent with the definition of a 1-PAM matrix: 1 in 100 expected
mutations. Suppose matrix M ’s elements, Mij , are scaled by a factor α 6= 1. In this case the new values become
Mij = αMij . This will change the values of the row sums such that

∑
j Mij = α 6= 1. Since we want a probability

matrix - every row sums up to 1 - a small adjustment is needed: we will add 1−α to every element on the main diagonal:

M ′
ij = αMij , i 6= j

M ′
ii = αMii + 1− α

This will restore the property of a probability matrix. Now what should α be? Let’s compute the new expected
number of mutations: ∑

i

pi(1−M ′
ii) =

∑

i

pi(1− αMii − 1 + α) = α
∑

i

pi(1−Mii)

3



This is just α multiplied by the old expected number of mutations. Therefore, we can set α appropriately. For
instance, in the example above, α = 0.02.

Having a 1-PAM matrix computed, the question is how to compute a 2-PAM matrix? In other words, what is the
probability p2(i → j) of i mutating into j in two units of evolution. This is the probability of i mutating into k, for
some k, in the first unit of evolution, and then, k mutating into j in the second unit of evolution. Mathematically, this
can be expressed as:

p2(i → j) =
∑

k

p(i → k)p(k → j) =
∑

k

MikMkj

This is the formula used to obtain the entry corresponding to the pair i and j when multiply M by itself. Hence, the
2-PAM matrix is just M2. An analogous step is used to show that the k-PAM matrix is the same as Mk. When working

with a k-PAM probability matrix the score will be computed in the same way: sk
ij = 10 log10

Mk
ij

pj
. The only change is

that now the values of Mk are plugged instead of those of M .

BLOSUM (BLOCKS Substitution Matrices) matrices

As mentioned earlier, BLOSUM are another type of matrices used in scoring sequence alignments. They are intended
to be used for scoring similarities of protein sequences that are evolutionary far apart (distant). Computing their values
is done using the information stored in a database of blocks (called the BLOCKS database) where each block is a multiple
ungapped alignment of related protein sequences. The sequences of each block are clustered, putting two sequences into
the same cluster if their percentage of matching aligned residues - or level of similarity - is above a certain threshold
L%. We define two sequences to be distant if they fall in different clusters. Therefore, two distant sequences differ by
at least (100 − L)%. The computation of BLOSUM-L, for a particular value of L, is based on counting the number of
mutations among distant sequences only. Therefore, lower values of L correspond to longer evolutionary times, and are
applicable for more distant sequences.

As explained above, in computing a BLOSUM-L matrix’s entries, we want to count the number of mutations between
distant sequences only - the ones that are less than L% similar. The value fab is the relative frequency of seeing a aligned
with b. Whenever such an alignment is observed for two sequences that are in different clusters, fab is incremented by

1
n1n2

, where n1 and n2 are the sizes of the two clusters (we scale by the size of the cluster since larger clusters are more
likely to contain mutations).

The steps through which a matrix is computed are:

• Estimate pi =
∑

j
fij∑

k,l
fij

;

• Estimate qij = fij∑
k,l

fkl
;

• BLOSUM-L(i,j)= log qij

pipj
with some scaling factor λ.

Consider an example where sequences are generated at random (so we are not using the BLOCKS database here)
such that pA = pG = pC = pT = 1

4 and the level of similarity is 50%, i.e. the probability that two aligned residues are
the same is 0.5. Then if L = 50%, we expect to have one cluster, where:

pAA = pGG = pCC = pTT = 0.5
1
4

=
1
8

and

pAG = pAC = pAT = pGA = pGC = pGT = pCA = pCG = pCT = pTA = pTG = pTC = 0.5
1
12

=
1
24

Then a match will have a score

m = log
1/8

1/4.1/4
= 1

and a mismatch will have a score

−s = log
1/24

1/4.1/4
= −0.585

4



References

Setubal J., Meidanis, J., Introduction to Molecular Biology, Chapter 3.
Drubin R. et al., Biological Sequence Analysis, Chapter 2.

5


