
Computational Biology
Lecture 9: CpG islands, Markov Chains, Hidden Markov Models HMMs

Saad Mneimneh

Given a DNA or an amino acid sequence, biologists would like to know what the sequence represents. For instance,
is a particular DNA sequence a gene or not? Another example would be to identify which family of proteins a given
protein (amino acid sequence) belongs to.

In both cases above, we have a sequence of symbols from some alphabet and we are required to say something about
the structure of that sequence. The same problem also arises in other areas of research such as pattern and speech
recognition. For instance, a common task in speech recognition is to recognize the spoken word or sentence from a signal
represented as a sequence of labels (quantization levels).

Therefore, we can adapt some of the techniques used in those areas, namely Markov Chains and Hidden Markov
Models, which will serve as probabilitic models of sequences. We will concentrate on a famous biological instance of the
general problem: to identify CpG islands in a DNA sequence where the alphabet consists of the four nucleotides A, G,
C, and T . Next, we define what a CpG island is.

CpG islands

The CG pair of nucleotides (dinucleotide) is the most infrequent dinucleotide in many genomes. We will denote this
dinucleotide by CpG to distinguish it from a C-G pair across the two strands of the DNA (recall that C binds with G).

The reason why the CpG dinucleotide is infrequent in the genome goes back to the fact that the C in CpG has a
tendency to become methyl-C, by a process called methylation. Methyl-C in turn has a high chance in mutating to a T .

Therefore, due to the methylation process, the CpG dinucleotide is rarer than would be expected by the independent
probabilities of C and G. The methylation process is suppressed in areas around genes and hence these areas contain
a relatively high concentration of the CpG dinucleotide. Such regions are called CpG islands, whose length varies from
few hundreds to few thousands bases.

The presence of a CpG island can be an indication to the start of a gene. Therefore, identifying CpG islands helps to
determine the location of genes across the DNA. We would like to answer the following two questions:

• Question 1: given a short sequence, is it from a CpG island or not?

• Question 2: given a long sequence, does it contain a CpG island or not?

Markov Chains

Since we are looking for the CpG dinucleotide, modeling dinucleotides (rather than just individual symbols) in a
sequence is now important. Previously, we modeled pairs of symbols using a joint probability distribution of alignments.
This joint probability distribution was estimated from statistical data pertaining to alignments of many sequences. Why
don’t we just do the same here? In other words, why don’t we just estimate the frequency of every dinucleotide and
obtain a probability distribution for dinucleotides? We need to model pairs of symbols in the same sequence now, and
not as a pair across two strands. Therefore, the second symbol of one pair, is the first symbol of the other, and there is
clearly a new dependence that need to be captured.

Therefore, we need to build a model that generates sequences in which the probability of a symbol depends on the
previous symbol. This way we will be able to capture the notion of two consecutive nucleotides on a strand. A suitable
model for this purpose would be a Markov Chain, which is a collection of states with transition probabilities between
states. In a Markov chain, the probability of the next state depends on the current state we are in. Here’s the definition
of a Markov chain:

Markov Chain

• Set of states Q

• For each pair of states i and j, a transition probability aij

• ∑
j aij = 1

1

We transition from one state to another in discrete time steps n = 1, 2, 3, If we are in state i at time step n, we go
to state j in time step n+1 with probability aij (the transition probability from state i to state j). We will also assume
that the state at time n, xn depends on the states x0, x1, x2, ... only through the most recent state. We call this the
Markov property.

Markov property: p(xn = j|x0, x1, x2, ..., xm−1, xm = i) = p(xn = j|xm = i),m < n. If m = n− 1 this is aij .

Figure 1 below shows an example of a Markov chain with two states.

1 2

p

p

1-p 1-p

1 2

p

p

1-p 1-p

Figure 1: A Markov chain

For the Markov chain of Figure 1, a11 = 1 − p, a12 = p, a21 = p, and a22 = 1 − p. A Markov chain can be also
represented as a matrix. For instance, the Markov chain in Figure 1 can be represented by the matrix

P =
[

1− p p
p 1− p

]

The matrix representation P of a Markov chain is useful; for instance, it is easy to show that p(xn = j|xm = i) =
Pn−m

ij , m < n.
Let us now look at the probability of obtaining a sequence x1...xn from our Markov chain. This is basically the probabil-

ity of a path x1...xn in the chain. This can be expressed as the probability of starting in state x1 and making successive
transitions to x2, x3, ..., xn. This is justified by the Markov property: p(x1...xn) = p(xn|x1...xn−1)p(x1...xn−1) =
p(xn|xn−1)p(x1...xn−1) (Markov property) = axn−1xnp(x1...xn−1).

Therefore, this probability can be expressed as:

p(x1...xn) = p(x1)ax1x2 ...axn−1xn = p(x1)
n−1∏

i=1

axixi+1

But what is the probability of starting in state x1? This has to be given, so we must have a probability distribution for
the starting state. Alternatively, we can model this by explicitly adding a start state with transition probabilities to all
other states. We will always start with that special start state. Let the start state be denoted by 0, then p(x1) = a0x1 :

p(x1...xn) = p(x0 = 0, x1...xn) = a0x1ax1x2 ...axn−1xn =
n−1∏

i=0

axixi+1

where x0 = 0.
Similarly, we can explicitly add an end state (also denoted by 0 for simplicity). Although not needed, having an end

state will help us model the length of the sequences too, becaise it will induce a probability distribution for the length of
a path in the Markov chain. Therefore, each state (including the start state, i.e. empty sequence) will have a transition
probability to that special end state. The probability of ending a sequence in state xn is axn0. The probability of a path
will be:

p(x1...xn) = p(x0 = 0, x1...xn, xn+1 = 0) = a0x1ax1x2 ...axn−1xnaxn0 =
n∏

i=0

axixi+1

where x0 and xn+1 are both 0.
We can model a sequence of dinucleotides as the Markov chain shown in Figure 2 below. Adding a start state and a

possible end state to the Markov chain is also shown.

2

A

C G

TA

C G

T
00

A

C G

TA

C G

T

00

A

C G

TA

C G

T

Figure 2: Markov chain for dinucleotides

Figure 2 shows the structure of the Markov chain. We still need to determine the parameters of the Markov chain,
namely the transition probabilities between the states. These transition probabilities will have to differ in the case
of CpG islands and non-CpG islands. For instance, in CpG islands we expect to see high transition probabilities to
nucleotides (states) C and G.

We will estimate the transition probabilities from statistical data about CpG islands and non-CpG islands. We will
therefore build two Markov chains, one for each. Then given a sequence, we compute the probability p of obtaining
the sequence in the CpG island Markov chain, and the probability q of obtaining the seuqnece in the non-CpG island
Markov chain. The odds ratio or log-odds ratio of these two probabilites can be used to determine whether the sequence
is coming from a CpG island or not. Here are the steps:

• Bring a set of short DNA sequences labeled + for CpG islands and - for non-CpG islands (therefore these sequences
are known to be either coming from CpG islands or not)

• For the CpG island Markov chain, estimate a+
ij using a+

ij =
c+

ij∑
k

c+
ik

, where c+
ij is the number of times nucleotide j

follows nucleotide i in the sequences labeled +.

• For the non-CpG island Markov chain, estimate a−ij is a similar way.

Now given a sequence x, compute p(x) for each Markov chain, denote these by p(x|+) and p(x|−). Then we use the
log-odds ratio log p(x|+)

p(x|−) to determine if x is coming from a CpG island or not: If log p(x|+)
p(x|−) > 0, the x is coming from

a CpG island. Assuming that the transitions from the start state and to the end state are the same in both cases, the
log-odds ration can be expressed as:

log
p(x|+)
p(x|−)

= log

∏n
i=0 a+

xixi+1∏n
i=0 a−xixi+1

=
n−1∑

i=1

log
a+

xixi+1

a−xixi+1

Here’s an example of transition probabilities for each of the two chains:

P+ =

A C G T
A 0.18 0.27 0.43 0.12
C 0.17 0.37 0.27 0.19
G 0.16 0.34 0.37 0.13
T 0.08 0.36 0.38 0.18

P− =

A C G T
A 0.30 0.20 0.29 0.21
C 0.32 0.30 0.08 0.30
G 0.25 0.25 0.29 0.21
T 0.18 0.24 0.29 0.29

Note that for the ’+’ chain (CpG islands), the transition probabilities to C and G are higher. Consider the sequence
CGCG. The log-odds ration for this sequence is

log
0.27
0.08

+ log
0.34
0.25

+ log
0.27
0.08

> 0

Therefore, CGCG is judged to be coming from a CpG island.
We have developed a startegy to answer Question 1. What about Question 2? We can use the dual Markov chain

model that we developed above to find CpG islands in a long sequence of nucleotides. Here’s how: consider windows
of small size, say 100, in the long sequence. For each window (a short sequence), compute the log-odds ratio as above.
Therefore, we can identify windows with positive log-odds ratio and then merge intersecting windows to determine which
parts of the long sequence are CpG islands.

The disadvantage of the above approach to Question 2 is that CpG islands tend to have variable length, and a window
of 100 might not be appropriate to judge: If the window is too small, then we tend to have every occurence of CG as

3

an island by itself. If the window is too large, then we do not achieve enough discrimination (the extreem case being
whether the whole sequence is a CpG island or not corresponding to a window size equal to the length of the sequence).

A better way is to incorporate both models (CpG islands and non-CpG islands) into one model. Therefore, we
will build a single Markov model consisting of both chains (+) and (-) described above as sub-chains, and with small
transition probabilities between the two sub-chains. This is shown below. We rename the states by adding ’+’ and ’-’
labels to distinguish them. This relabeling is critical; otherwise, we cannot distinguish states of the new model.

A- T-
G-C-

A- T-
G-C-

A+ T+
G+C+

A+ T+
G+C+

SS

Figure 3: Combining both models

The advantage of this model is its trainability to reflect reality. As we have done before, we can estimate the transition
probabilities between the two sub-chains by relying on known annotated sequences with all their transitions between
CpG and non-Cpg islands. This way we remove the dependence on a particular window size.

The problem that we face with this new model, however, is that there it not a one-to-one correspondence between the
states and the symbols of the sequence. For instance, the symbol C can be generated by both states C+ and C−. Hence,
a sequence does not correspond to a path in the model anymore, but to multiple paths. In other terms, a sequence
x1...xn does not uniquely determines the path in the model. The states are hidden in the sense that the sequence itself
does not reveal how it was generated. Therefore, we need to develop a slightly different theory for this new model, called
Hidden Markov Model.

Hidden Markov Models

A Hidden Markov Model is defined as:

• A Markov Chain

– Set of states Q

– (transition probabilities) For each pair of states i and j, a transition probability aij

–
∑

j aij = 1

• An alphabet of symbols
∑

• (emission probabilities) For each state k, and symbol b, ek(b) = p(xi = b|πi = k) (now we use variable π for states
and variable x for symbols)

• ∑
b ek(b) = 1 for each state k

Therefore, an HMM incorporates a Markov chain and decouples the states from the symbols: the probability of seeing
symbol b in state k is called the emission probability of symbol b in state k, and denoted by ek(b). Therefore, a symbol
can be emitted by many states with different probabilities. The emission probabilities for our HMM of dinucleotides
shown in Figure 3 are straight forward. For instance eA+(A) = 1, eA+(G) = 0, eA+(C) = 0, and eA+(T) = 0.
The transition probabilities between the (+) states as well as between the (-) states were determined previously. The
transition probabilities between (+) and (-) states can be determined, as mentioned earlier, from previously annotated
DNA sequences where transitions from CpG to non-CpG inslands and vice-versa are known. Later we will look at the
general problem of determining the parameters of an HMM. We also assume that the Markov property holds:

Markov porperty: p(πn = j|x0, x1, x2, ..., xm, π0, π1, π2, ..., πm−1, πm = i) = p(xn = j|πm = i),m < n. If m = n− 1
this is aij .

4

For now, we can consider the following three questions related to HMMs.

• evaluation: given a sequence x, what is the probability p(x) of obtaining x in the model.

• decoding: given a sequence x, what is the most probably path that prodoces x in the model.

• learning: given a sequence x, what are the parameters (transition probabilities and emission probabilities) that
will maximize p(x) in the model.

We will start with the decoding question. After all, this is what we are interested in for our Question 2 of the CpG
island problem: for a DNA sequence x, what is the most probable path that produced x in the given HMM. Recall that
now the path is not unique, and one possible way of explaining how x was produced (hence knowing its composition of
CpG islands) is to look at the most probable path in the model. We will later look at other ways of interpreting x, not
necessarily looking for its most probable path. But now, let us concentrate on this task.

Before presenting the algorithm for obtaining the most probable path of x and computing its probability, let us
consider a concrete example of an HMM known as the Dishonest Casino.

The Dishonest Casino: A fair die is used most of the times. However, the casino switches to a loaded die with a
small probability, say 0.05, and switches back to the fair die with probability 0.1. The loaded die has p(1) = p(2) =
p(3) = p(4) = p(5) = 0.1, and p(6) = 0.5. Given a sequence of rolls, can you tell when the fair die was used and when
the floaded die was used? [try to think about the similarity between this problem and Question 2 of the CpG island
problem]

The Dishonest Casino can be represented as an HMM with two states Fair and Loaded, each with different emission
probabilities for the symbols 1 through 6.

eF(1): 1/6
eF(2): 1/6
eF(3): 1/6
eF(4): 1/6
eF(5): 1/6
eF(6): 1/6

eL(1): 1/10
eL(2): 1/10
eL(3): 1/10
eL(4): 1/10
eL(5): 1/10
eL(6): 1/2

0.1

0.05

Fair Loaded

0.95 0.9

eF(1): 1/6
eF(2): 1/6
eF(3): 1/6
eF(4): 1/6
eF(5): 1/6
eF(6): 1/6

eL(1): 1/10
eL(2): 1/10
eL(3): 1/10
eL(4): 1/10
eL(5): 1/10
eL(6): 1/2

0.1

0.05

Fair Loaded

0.95 0.9

Figure 4: The Dishonest Casino HMM

Therefore, for a given sequence of rolls, we can ask what the most probable path is.

Now let us come back to our CpG island problem and consider the sequence CGCG. The probability of sequence
CGCG being emitted by the state sequence C−, G−, C+, G+ in our HMM model is

a0C− .1.aC−G− .1.aG−C+ .1.aC+G+ .1.aG+0

In general, the probability of obtaining a sequence x on a particular path π is:

p(x1...xn, π1...πn) = p(x1...xn, π0 = 0, π1...πn, πn+1 = 0) =

a0π1eπ1(x1).aπ1π2eπ2(x2)...aπn−1πneπn(xn).axn0 =

a0π1

n∏

i=1

eπi(xi)aπiπi+1

where πn+1 = 0. There are many state sequences (paths) that generate the same sequence CGCG with different
probabilities. We would like to find the most probable path π∗ = arg maxπ p(π|x). Since we know how to compute
p(x, π) for a given sequence x and a path π (see above), it is useful to note that arg maxπ p(π|x) = arg maxπ p(x, π).
The proof of this fact is left as an exercise.

Of course computing p(x, π) for every possible π and choosing the π that maximizes it is not efficient since we have
an exponential number of paths. We will revert to a dynamic programming technique (yes... again).

5

Let vl(i) be the probability of the most probable path π = π1...πi that generates x1...xi and ends in state πi = l.
Obviously, we want the prbability maxkvk(n) that corresponds to the most probable path for generating x1...xn (and
ending in any state). We can express vl(i) as follows:

vl(i) = el(xi).max
k

(vk(i− 1)akl)

The equation above says that the most probable path for generating x1...xi ending in state l has to emitt xi in state
l (hence the emission probability el(xi)) and has to contain the most probable path for generating x1...xi−1 ending in
any state k, followed by a transition from state k to state l (hence the transition probability akl).

We can prove this mathematically as follows:

vl(i) = maxπ1..πi−1 p(x1...xi, π1...πi−1, πi = l)
= maxπ1..πi−1 p(xi, πi = l, x1...xi−1, π1...πi−1)
= maxπ1..πi−1 p(xi, πi = l|x1...xi−1, π1...πi−1).p(x1...xi−1, π1...πi−1)
= maxπ1..πi−1 p(xi, πi = l|πi−1).p(x1...xi−1, π1...πi−1)
= maxπ1..πi−2k p(xi, πi = l|πi−1 = k).p(x1...xi−1, π1...πi−2, πi−1 = k)
= maxπ1..πi−2k el(xi)akl.p(x1...xi−1, π1...πi−2, πi−1 = k)
= maxkπ1..πi−2 el(xi)akl.p(x1...xi−1, π1...πi−2, πi−1 = k)
= maxk maxπ1..πi−2 p(x1...xi−1, π1...πi−2, πi−1 = k)el(xi)akl

= maxk(vk(i− 1)el(xi)akl) = el(xi)maxk(vk(i− 1)akl)

Therefore, we can compute vk(n) for any state k recursively to obtain the probability of the most probable path.
By keeping pointers in the dynamic programming table, we can obtain the path itself. This dynamic programming
algorithm in known as Viterbi decoding algorithm.

• Initialization
v0(0) =1, vk(0) = 0 for k > 0

• Main iteration
for i = 1…n

vl(i) = el(xi).maxk (vk(i – 1).akl)
ptrl(i) = argmaxk(vk(i – 1)akl)

• Termination
p(x,π*) = maxk(vk(n)ak0)

Time = O(k2n)
Space = O(kn)

x0 x1 x2 xn

0 1
1 0

k 0

.

.

.
. . .

x0 x1 x2 xn

0 1
1 0

k 0

.

.

.
. . .

n

Figure 5: Viterbi decoding algorithm

If there is no end state, then the term ak0 in computing the probability p(x, π∗) is ommitted.
Here’s an example of running Viterbi algorithm on the sequence 6666 for the Dishonest Casino problem:

.0228.0506.1125.250L

.0008.0021.0132.08330F

00001S

6666

.0228.0506.1125.250L

.0008.0021.0132.08330F

00001S

6666
S

F

L

S

F

L

S

F

L

S

F

L

S

F

L

S

F

L

S

F

L

S

F

L

S

F

L

S

F

L

6 6 6 6

Figure 6: Viterbi for Dishonest Casino

References

Durbin R. et al, Biological Sequence Analysis, Chapter 3.

6

