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CG islands

• Whenever CG occurs (CpG to distinguish it from 
C-G pair across the two strands), there is a high 
chance that C mutates to T by methylation.

• The CpG dinucleotide is rarer than would be 
expected by the independent probabilities of C 
and G.

• The methylation process is suppressed in areas 
around genes. Such regions are called CpG
islands (100-1000 bases long).
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Questions

• Q1: Given a short sequence, is it from a 
CpG island or not?

• Q2: Given a long sequence, does it 
contain a CpG island or not?

• Start with Q1.
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Modeling Dinucleotides

• Dinucleotides are important here. We 
need to model them in a sequence.

• Build a model that generates sequences in 
which the probability of a symbol depends 
on the previous symbol (why?).

• Markov Chain!
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Markov Chain

A Markov Chain is defined as:

– A set of states

– For each pair of states i and j, a transition 
probability aij.

– Σjaij = 1
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Markov Chain

• We transition from one state to another in discrete time 
steps n = 1, 2, 3, …

• If we are at state i in time step n, we go to state j in time 
step n+1 with probability aij.

• The state at time n, xn, depends on the states  
xn-1, xn-2, … only through the most recent state xn-1.

p(xn = j | x0, x1, …, xn-2, xn-1 = i) = 
p(xn = j | xn-1 = i) = aij
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Example

• States: 1, 2

• Transition probabilities
a11=1-p
a12=p
a21=p                P =
a22=1-p

1 2

p

p

1-p 1-p

1 – p p

p 1 – p 
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p(xn = j | x0 = i) 

The probability of being in state j at time n
given that state i is the starting state:

p(xn = j | x0 = i) = Pn
ij
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Modeling sequences

We will model 
dinucleotides
using a Markov Chain

states = DNA symbols

A

C G

T



Saad Mneimneh

Probability of a path
(or a sequence)

The probability of a given sequence of 
states x1…xn is:

p(x1…xn) = 
p(x1…xn-1, xn) =
p(xn, x1…xn-1) = 
p(xn | x1…xn-1)p(x1…xn-1) = 
p(xn | xn-1)p(x1…xn-1) =
axn-1 xnp(x1…xn-1) =
p(x1)Πi=2…n axi-1 xi
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Modeling the beginning and end of 
the sequence

• p(x1…xn) = p(x1)Πi=2…n axi-1 xi  

• what is p(x1)? Depends on how we start.

• Add a distinct start state x0 = S.
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Adding a start state

S

x = x1x2 … xn

p(x1 = i)=asi
A

C G

T
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Adding an end state

E

x = x1x2 … xn

p(xn = i) =
p(E | xn = i) = aiE

A

C G

T
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Modeling sequences

• Build the model

• Obtain transitional 
probabilities 
from statistical data
– For CpG islands

– For non CpG islands

A

C G

T
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CpG island v.s. non CpG island

• Bring a set of DNA sequences labeled ‘+’ for 
CpG island and ‘-’ for non CpG island

• In each case, estimate aij
+ and aij

-

• For instance, aij
+ = cij

+ / Σk cik
+ where cij

+ = 
number of times j followed i in regions labeled ‘+’

• Use log-odds ratio to decide whether a 
sequence came from a CG-island or not
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Example

0.180.380.360.08T

0.130.370.340.16G

0.190.270.370.17C

0.120.430.270.18A

TGCAaij
+

0.290.290.240.18T

0.210.290.250.25G

0.300.080.300.32C

0.210.290.200.30A

TGCAaij
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Questions

• Done with Q1.

• Q2: Given a long sequence, does it 
contain a CpG island or not?

• How can we answer Q2?
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Markov Chain model

• The Markov Chain model that we have just 
build can be used

• Calculate the log-odds score for windows 
of size, say 100, in the sequence

• CpG islands will stand out with positive 
values
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Problems?

The previous approach is unsatisfactory

– CpG islands have variable length

– Why use a window of size 100? Why not 10 or 
50 or 200? (no way to tell best size, could be 
average length of CpG island, but still 
unsatisfactory)
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Better solution

• Represent CpG islands and non CpG islands in 
one model

• Both Markov chains build earlier put together 
with small transition probability between them

• We will have two states for each nucleotides �
rename them A+, C+, G+, T+ and A-, C-, G-, T-
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New Model

A- T-
G-C-

A+ T+
G+C+

S
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What is the big difference now?

• There is not a one-to-one correspondence 
between the states and the symbols.
– Given a symbol C, it could have been generated by 

state C+ or state C-

• Before, a sequence uniquely determines the 
path

• Now, for a given sequence, we want to find the 
most likely path
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Hidden Markov Model
A Hidden Markov model HMM is defined as:
[state is hidden, decouple states from symbols]

– A set of hidden states

– For each pair of states i and j, a transition probability aij.

– Σjaij = 1

– For each state k, emission probabilities 
ek(b) = p(xi = b | πi = k) 
[now we use variable π for states and variable x for symbols]

– Σbek(b) = 1 for each state k

– Markov property: p(πn = j | x0…xn-1, π0…πn-2, πn-1 = i) = 
p(πn = j | πn-1 = i) = aij
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Questions with HMMs

• Evaluation: given x, what is the probability p(x) 
that it was produced by the model?

• Decoding: given x, what is the most probable 
path that produces x in the model?

• Learning: given x, what are the most probable 
parameters (transitional probabilities and 
emission probabilities) of the model?
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The dishonest Casino

• Casino uses a fair die most of the time

• Loaded die has p(1) = p(2) = p(3) = p(4) = p(5) = 0.1, 
p(6) = 0.5

• Casino switches from fair to loaded with a probability of 
0.05

• Switches back with probability 0.1

[think about similarities with CpG island]

Saad Mneimneh

HMM for dishonest casino

We just see the sequence of rolls x = x1…xn. We do not 
know the path π = π1…πn that generated the sequence x. 
This is why the state is hidden.

We need to find the most probable path π.

eF(1): 1/6
eF(2): 1/6
eF(3): 1/6
eF(4): 1/6
eF(5): 1/6
eF(6): 1/6

eL(1): 1/10
eL(2): 1/10
eL(3): 1/10
eL(4): 1/10
eL(5): 1/10
eL(6): 1/2

0.1

0.05

Fair Loaded

0.95 0.9
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Most probable path

• Label start state and end state by 0.

• The joint probability of observing a sequence of symbols 
x = x1…xn emitted by a sequence of states π = π1...πn:
p(x,π) = a0π1.eπ1(x1)…aπn-1 πneπn(xn).aπn0

= a0π1Πi=1..n eπi(xi)aπi πi+1

where πn+1 = 0

• We want to find π* = argmaxπ p(π | x) = argmaxπ p(x,π) 

• Try all possible π: EXPONENTIAL!

Why?
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DP… again �

• vl(i) = probability of most probable path 
π = π1…πi for x1…xi ending in state l (πi = l)

• vl(i) = el(xi).maxk (vk(i – 1).akl)

l

xi with prob. el(xi)k
All possible 
states akl

πi = l

vk(i-1)
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Derivation
vl(i)

= maxπ1..πi-1 p(x1…xi, π1…πi-1, πi=l)

= maxπ1..πi-1 p(xi, πi=l, x1…xi-1, π1…πi-1)

= maxπ1..πi-1 p(xi, πi=l | x1…xi-1, π1…πi-1).p(x1…xi-1, π1…πi-1)

= maxπ1..πi-1 p(xi, πi=l | πi-1).p(x1…xi-1, π1…πi-1)

= maxπ1..πi-2,k p(xi, πi=l | πi-1 = k).p(x1…xi-1, π1…πi-2, πi-1 = k)

= maxπ1..πi-2,k el(xi)akl.p(x1…xi-1, π1…πi-2, πi-1 = k)

= maxk maxπ1..πi-2 el(xi)akl.p(x1…xi-1, π1…πi-2, πi-1 = k)

= maxk maxπ1..πi-2 p(x1…xi-1, π1…πi-2, πi-1 = k) el(xi)akl

= maxk vk(i-1)el(xi)akl = el(xi)maxk vk(i-1)akl
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Viterbi decoding algorithm

• Initialization
v0(0) =1, vk(0) = 0 for k > 0

• Main iteration
for i = 1…n

vl(i) = el(xi).maxk (vk(i – 1).akl)
ptrl(i) = argmaxk(vk(i – 1)akl)

• Termination
p(x,π*) = maxk(vk(n)ak0)

Time = O(k2n)
Space = O(kn)

x0 x1 x2 xn

0 1
1 0

k 0

.

.

.
. . . 

n
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Example

What is the most probable path for the following 
outcome of the casino?
6666

.0228.0506.1125.250L

.0008.0021.0132.08330F

00001S
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