
CSCI 493.66 Unix Tools
with emphasis on string algorithms and Bioinformatics

Homework 4
Due 04/02/09

Saad Mneimneh

Computer Science

Hunter College of CUNY

Problem 1: Fixing pwd
The following is an adaptation of the C code for pwd provided in the book, in
C++ and Perl respectively:

#include <iostream>
#include <string>
#include <sys/stat.h>
#include <dirent.h>

using std::cout;
using std::string;

ino_t name2inode(const char * name) {
struct stat info;
stat(name, &info);
return info.st_ino;

}

string inode2name(ino_t inode) {
int dircount=0;
DIR * dirp=opendir(".");
dirent * direntp;
struct stat info;
while (direntp=readdir(dirp)) {

stat(direntp->d_name, &info);
if (direntp->d_ino==inode)
return string(direntp->d_name);

}
return string();

}

void pwd(ino_t inode) {
string name;
struct stat info;
stat("..", &info);
if (info.st_ino != inode) {

chdir("..");
name=inode2name(inode);
pwd(info.st_ino);
cout<<"/"<<name;

}
}

int main() {
pwd(name2inode("."));
cout<<"\n";

}

#!/usr/bin/perl -w
use strict;

sub name2inode {
my $name=shift;
(my $dev, my $ino,my $mode,my $nlink,
my $uid,my $gid,my $rdev,my $size,
my $atime,my $mtime,my $ctime,
my $blksize,my $blocks)=stat($name);

return $ino;
}

sub inode2name {
my $inode=shift;
opendir(DIR, ’.’);
while (my $dname=readdir(DIR)) {

(my $dev, my $ino,my $mode,my $nlink,
my $uid,my $gid,my $rdev,my $size,
my $atime,my $mtime,my $ctime,
my $blksize,my $blocks)=stat($dname);

if ($ino==$inode) {
return $dname;

}
}
return ’’;

}

sub pwd {
my $inode=shift;
(my $dev, my $ino,my $mode,my $nlink,
my $uid,my $gid,my $rdev,my $size,
my $atime,my $mtime,my $ctime,
my $blksize,my $blocks)=stat(’..’);

if ($ino!=$inode) {
chdir(’..’);
my $name=inode2name($inode);
pwd($ino);
print "/$name";

}
}

pwd(name2inode(’.’));
print "\n";

Unfortunately, this pwd code does not work properly with multiple disks or
multiple partitions on the same disk. Each partition has it own file system tree.
One file system is designated as the root file system. The root of its tree is the
root of the entire tree. Each of the remaining file systems is attached to some
subdirectory of the root file system. This is called mounting, and the subdirec-
tory is called a mount point. Look carefully at the following directories.

247 .
520 ..
402
34 ←− mount point↘

2 .
2 ..

402
277
288

The scenario above suggests two things:

• when ’.’ and ’..’ have the same inode, this does not necessarily mean that
we have reached the root. Therefore, the recursion in the pwd function
will stop short.

• when a file system is mounted, the inode of its root may be different than
the entry corresponding to it in the parent directory. Therefore, the search
in the inode2name function will fail.

(a) Fix the first problem by using chdir(”..”) and stating ’.’ instead of stating
’..’

(b) Fix the second problem by using the st dev field of the stat structure. So
in some cases, instead of looking for a matching inode, you will be looking for
a matching device.

Problem 2: Writing write

(a) Enhance the simplified version of the write command presented in the book
on page 143 (does not send a greeting and requires the file name of the terminal).
Your enhanced version must:

• accept the user name as argument

• send a greeting containing: the name of the user sending the message

• handle the cases when the user is not logged on, when the user is logged
on at multiple terminals, and when the user is logged on but does not
allow to me messaged

(b) Implement a command called mesg to flip the existing permissions on ac-
cepting messages at the terminals where you are logged on.

Hint: both parts can be done by making use of information in the utmp file.
Alternatively, using the uid, one can list files in /dev/pts/ and identify the ter-
minals corresponding to a given user.

Problem 3: Links for locks
Consider the following C++ function:

int lock(const char * name) {
char * namedotlck = new char[strlen(name)+4];
strcpy(namedotlck, name);
strcpy(namedotlck+strlen(name), ‘‘.lck’’);
int status=link(name, namedotlck);
delete[] namedotlck;
return status+1;

}

(a) Explain how you can use the above locking mechanism to make sure that if
two processes access the same file, only one will succeed. What is it about the
link system call that makes it a useful way to lock files?

(b) Implement a similar function to unlock a file.

(c) Write a program that, given a filename, repeatedly:

• writes the word “hello” to the end of the file

• writes the word “bye” to the end of the file

Run this program from two different terminals for some time, then stop them
using Ctrl-C. Verify that sometimes the words are interleaved, e.g. hello hello
bye bye.

(d) Use the locking and unlocking mechanism to avoid this interleaving.

(e) This problem illustrates how to lock an existing file, but how can a program
use link to prevent two processes from both creating the same file?

PS: link and other file system functions are also available in Perl.

