Looking for patterns with regular expressions
that make mistakes

Saad Mneimneh
Computer Science
Hunter College of CUNY

General description

We implemented a basic regular expression matching algorithm based on NFAs
for one of the homework assignments. The program for that assignment identi-
fies lines that contain a pattern provided by a regular expression. In this project,
we would like to add the following features:

e Allow the matching to make up to k mistakes, where k is a parameter
provided to the program. The definition of a mistake will be provided
shortly.

e Instead of simply reporting a line that contains the regular expression
pattern (possibly with up to k mistakes), the program should exactly
highlight the beginning and end of the occurrence of the pattern in the
line (possibly multiple and overlapping occurrences exist).

e When the program is reading from the terminal, the ending positions of
those occurrences must be highlighted in real time (this will require to use
non-canonical mode and suppress echoing on the terminal for the program
to display the appropriate output). Upon pressing return, the program
waits for a new input.

How to model mistakes

A mistake is either a character mismatch or the absence of a character or the
addition of a character. An example of each appears below, assuming the regular
expression is ’abc’.

e mismatch: axc is a match with 1 mistake, x and b don’t match
e absence: ac is a match with 1 mistake, b is missing
e addition: abdc is a match with 1 mistake, d is added

Each of the occurrences above can be interpreted as a match with more than
1 mistake; for instance, ac represents a mismatch (¢ and b), and an absence of
c.

ac-
Il

abc

But we take the number of mistakes to be the smallest possible. For the
same example:

Modifying the NFA

Mistakes will be accounted for by creating k + 1 identical NFAs. Each NFA can
be thought of as being at some level I = 0. ..k (the level indicates the number of
mistakes made so far). For a given NFA| a state ¢ transitions to a state j upon
reading a character (in addition to € transitions for non-determinism). These
transitions stay the same within each of the created identical NFAs. Transitions
across NFAs are added and exist only from an NFA at level [to an NFA at level
l 4 1. The following figure illustrates the three additional transitions required
for each state, note that one of them is an € transition.

NFA at level |

\\\ not ¢ (mismatch)

S (& (absence)
N

~
N,

any (addition)

NFA at level |+1

The pattern is accepted whenever any of the k£ + 1 accept states is reached.

Mapping identical states across levels

One particular challenge is to identify, for state i at level [, state i at level [+ 1.
Since all NFAs are created identical but independently, this may be difficult.
One suggestion is to provide a function to map state 7 at level [to state ¢ at
level [+ 1 by using an extra pointer. The pointer is initially set to NULL. The
mapping proceeds by visiting the states of the two NFAs in an identical way,
starting from the start state of each, and setting the extra pointer appropriately.
Here’s an example motivated by the homework assignment.

void mapNFA(State * s, State *t) {
if (!s || s->mapped)
return;
s->mapped=true;
map(s, t);
mapNFA (s->next, t->next);
mapNFA(s->alt, t->alt);

Finding occurrences

The actual occurrence of a pattern can be found as follows. First, the regu-
lar expression pattern E is modified by adding !x to become ! * .(E). In this
way, when an accept state is reached, the ending position of the occurrence (or
multiple occurrences) is immediately determined to be the character just read,
say the j** character. To determine the starting position, we search the reverse
string starting at the j** character, for the regular expression E, where E is
the reverse of . This identifies all starting positions that correspond to the
previously identified end.

Further detail

Further detail on the project and implementation can be obtained through dis-
cussion between the student and the professor.

