
CSCI 150 Recitations

Saad Mneimneh

Recitation 1

• Cover concept of factorial

– First, through examples

– Then in general, showing notation like n! = 1× 2× . . .× n

– Describe why n! = n× (n− 1)!

– Explain simplification in fractions

∗ 10!
7! = 10× 9× 8

∗ (n+1)!
n! = n+ 1

∗ n!
(n−k)! = n× (n− 1)× . . .× (n− k + 1)︸ ︷︷ ︸

explain why this is k terms

• Explain that integer intervals [a, b] (where b ≥ a) contain integers a, a +
1, a+ 2, . . . , b

– Why does it have b− a+ 1 terms (elements)?

– Apply to above example: n− (n− k + 1) + 1 = k

– What if b = a− 1?

• Cover the sum
S = 1 + 2 + . . .+ n

– Show it is equal to n(n+ 1)/2. For instance,

1 2 . . . n
+ n (n-1) . . . 1

(n+1) (n+1) . . . (n+1)

We have 2S = n(n+ 1) (n+ 1 appears n times)

– Explain why
1 + 2 + . . .+ n = n(n+ 1)/2

1 + 2 + . . .+ (n− 1) = n(n− 1)/2

is ”the same” formula.

– Explain how 1+2+ . . .+(n−1) = n(n−1)/2 counts pairs by showing
the diagram below (for n = 5):
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Recitation 2

Practice sequences, intervals, and sums.

• Sum of the first n positive odd numbers:

S =

n∑
i=1

(2i− 1) = 1 + 3 + . . .+ (2n− 1)

– By splitting the sum:

n∑
i=1

2i−
n∑

i=1

1 = 2

n∑
i=1

i︸︷︷︸
n(n+1)/2

−n = n2

– By transformation: Dividing each term by 2 and adding 1/2 to it,
we get S/2 + n/2 = 1 + 2 + . . .+ n = n(n+ 1)/2, so S = n2.

• Find the 168th term in

68, 79, 90, . . . , 2257

– Make 167 steps from 68 multiplied by the step size (the step size is
11): 68 + 167× 11 = 1905.

– Represent the ith number as 68 + (i− 1)× 11, then set i = 168.

• A triangle is made out of 100 starts, then 97 starts, then 94 starts, ...
Write an expression for the total number of stars and evaluate it.

– First, observe that the step size is 3, so we have
∑?

i=0(1 + 3i).

– Then figure out the bound by looking at the largest number, which
is 100: 1 + 3i = 100 means i = 33. So we have

∑33
i=1(1 + 3i)

– Finally, evaluate as above by splitting the sum.

Do some counting exercises based on the snake and ladder problem.

• In how many ways can we place one snake on a chessboard if the head
must be on black?

2



– Use the addition rule, where the categories are given by where the
head is. Count how many tails are possible in each scenario. We get

62 + 60 + 58 + . . .+ 2 + 0

– Write using sum expression
∑30

i=0(2 + 2i)

– Evaluate:
∑30

i=0(2 + 2i) = 2
∑30

i=0(1 + i) = 2
∑31

i=1 i = 2 × 31×32
2 =

31× 32.

– Explain why the product rule is tricky to apply: once a square is
chosen, the next choice is dependent on the previous one. For in-
stance, if we choose a black square for the head, then the number of
ways we could choose another square depends on where that head
is. If we simply say choose a black square (in 32 ways), then choose
any square (63 ways), we do not guarantee that the higher number
square is black.

Recitation 3

Go over arithmetic and geometric series:

• Arithmetic:

b∑
i=a

(xi+ y) =

b∑
i=a

xi+

b∑
i=a

y = x

b∑
i=a

i+ (b− a+ 1)y

= x(b− a+ 1)
a+ b

2
+ (b− a+ 1)y = (b− a+ 1)

(a+ b

2
x+ y

)
• Geometric:

n∑
i=0

bai = b+ba+ba2+. . .+ban = b(1+a+a2+. . .+an) = b
an+1 − 1

a− 1
(a ̸= 1)
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Review addition and product rules:

• Addition: Given k disjoint sets S1, S2, . . . , Sk, |S1 ∪S2 ∪ . . .∪Sk| = |S1|+
|S2|+ . . .+ |Sk|

• Product: If a task can be done in k phases and each phase i can be carried
out in αi ways (regardless of previous phases), then the entire task can be

carried out in
∏k

i=1 αi ways.

Practice product rule:

• The number of permutations on n objects

– 1. choose an object ... n ways

– 2. choose another objects ... n− 1 ways

– ...

– n. choose another objects ... 1 way

By the product rule, we have n(n− 1)(n− 2) . . . 1 = n! ways. There is no
overcounting because every outcome is a different permutation.

• Given m boys and n girls, in how many ways can we choose a couple?

– 1. choose a boy ... m ways

– 2. choose a girl ... n ways

By the product rule, this is mn ways. There is no overcounting because
every outcome is generated exactly once. For instance, assume (Bob,
Alice) is one such outcome. The only way to generate it is by choosing
Bob first, and choosing Alice next. There is no way we could choose Alice
then Bob because the procedure above does not allow it.

• Given the same set of boys and girls, in how many ways can we choose 3
people, not all the same gender. Think of two possible categories: (1 boy,
2 girls) or (1 girl, 2 boys). For instance, let’s focus on the first category:

– 1. choose a boy ... m ways

– 2. choose a girl ... n ways

– 3. choose another girl ... (n− 1) ways

By the product rule, we have mn(n− 1). However, there is overcounting.
For instance, consider the outcome (Bob, Alice, Cindy). There is another
outcome, namely (Bob, Cindy, Alice), which to us would be the same.
Therefore, there is overcounting by 2. So the answer must be mn(n−1)/2.
(Can you think of another procedure that would immediately produce the
n(n − 1)/2 without overcounting?) By analogy, the second category will
give us nm(m−1)/2. The final answer is, therefore, mn(n−1)/2+nm(m−
1)/2 = mn(m+ n− 2)/2 by the addition rule (make sure you see clearly
that the two categories of outcomes are disjoint).
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• Encourage the students to verify algebraically:(
m

2

)
+

(
n

2

)
+mn =

(
m+ n

2

)
• Encourage the students to work on the exercise mentioned at the end of
Lecture 4 about placing one ladder and one snake. The idea is to use the
product rule, and to recognize that one must start with the snake, since
otherwise, choosing squares for the snake will become dependent on the
choices made for the ladder and, as a result, the product rule cannot be
applied.

– 1. choose a black square for snake ... n/2 ways

– 2. choose a white square for snake ... n/2 ways

– 3. choose another square for ladder ... n− 2 ways

– 4. choose another square for ladder ... n− 3 ways

Observe that the last two phases can be permuted and would still produce
the same ladder. Therefore, the above procedure overcounts by 2, and the
answer is n2(n− 2)(n− 3)/8.

Recitation 4

• Practice the 4 ways of making selections

Select k form n ordered unordered

no repetition n!
(n−k)!

(
n
k

)
with repetition nk

(
n+k−1

k

)
with some typical examples of your choice. Here are some suggestions:

– Go over the example of kids and gifts at end of Chapter 2.

– Compare the two scenarios of making k-letter words using an n-letter
alphabet, when the letters in the word must appear in alphabetical
order or not. Emphasize the modeling and math over the exact literal
wording; for instance, when alphabetical order is requires, we must
use

(
n
k

)
, and when alphabetical order is not required, we must use

n!/(n− k)!.

– The same example above when repetitions are allowed, leading to(
n+k−1

k

)
or nk when alphabetical order is required or not required,

respectively.

– Go over problems about binary patterns; for instance, why is the
number of n-bit words 2n, and those which have exactly k 1s

(
n
k

)
?
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– In how many ways can we choose 3 people out of 10 to form a com-
mittee if one of them must be the chair of the committee? First, do
this using the product rule by starting from scratch and adjusting
for overcounting. Second, do it by abstractly modeling as a choice of
3 out of 10 without order, followed by a choice of the chair among
the chosen ones. The first approach leads to 10 · 9·8

2 , and the second

leads to
(
10
3

)
· 3.

• Practice concepts of one-to-one, onto, and bijection. Here are some exam-
ples (assume N = {1, 2, 3, . . .}):

– f : Z → Z, where f(n) = 2n

– f : N× N → N, where f(n,m) is the larger of m and n

– f : R → R, where f(x) = x/π

– f : N → Z, where f(n) = 1 − n
2 if n is even, and f(n) = n+1

2 if n is
odd.

• Count the number of up/right paths from A to B by establishing a bijection
with binary words that have a specific number of 1s and 0s. The answer
for the example below should be

(
8
4

)
. This is because there are that many

binary words with 4 1s and 4 0s.

• Do an example of selecting k out of n with repetition and no order and
remind the students that the number of ways we can do that is exactly
the number of integer solutions to

x1 + x2 + . . .+ xn = k, xi ≥ 0

Use your own n and k in the example. Change the example by requiring
x1 ≥ 1 instead. What does it really mean? (it means that in the k
selection from S = {a1, a2, . . . , an}, you must select a1 at least once.)
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Recitation 5

• If there are any items in Recitation 4 that are were not covered, cover
them (or an equivalent idea) here.

• This is a word problem related to the integer solutions problem. Assume
we have 20 people sitting in a row on a table, and we want to select 3
of them, but no two of the selected people can be adjacent. This can be
modeled like this: The choice of the 3 people will divide the rest of the
people on the table into 4 groups from left to right, with x1, x2, x3, and
x4 people in each respectively, where x1 + x2 + x3 + x4 = 17. Given the
constraints on adjacency, we know that x1 ≥ 0, x2 ≥ 1, x3 ≥ 1, and
x4 ≥ 0. Using x2 = 1 + x′

2 and x3 = 1 + x′
3, we set up the equation:

x1 + x′
2 + x′

3 + x4 = 15

where x1, x
′
2, x

′
3, x4 ≥ 0. The number of integer solutions is

(
4−1+15

4−1

)
=(

18
3

)
.

Remark: one might ask why did the original problem transform into the
problem of choosing 3 from 18? One way to answer this is simply due to the
bijection that transformed the original setting into the integer solutions
problem. But another way of seeing this is as follows: Imagine all the
people who are not selected. We have 17 of them. Look at the spaces
between them (indicated by · below):

.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.

There are exactly 18 spaces. The 3 selected people belong to these spaces.
But given the adjacency constraint, each space can hold at most one per-
son. Therefore, we must select 3 spaces out of the 18 to place the selected
people.

• Make sure students understand the Pascal triangle and why:(
n

k

)
=

(
n

n− k

)
(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
, 0 < k < n

– Prove them algebraically by replacing binomial coefficients with what
they are and manipulating the expressions.

– Prove them by combinatorial arguments, i.e. by showing that they
count the same thing in two ways. For instance, to choose k things
out of n, we can choose n− k things out of n and throw them away,
leaving k things. In addition, if we assume S = {1, 2, . . . , n}, then to
choose k out of n, we can do it by making 1 among the choices and
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choosing the remaining k − 1 out of n − 1, or we do it by making 1
not among the choices and choosing all k out of n − 1. These two
scenarios are disjoint and, therefore, their sum must make all ways
of choosing k out of n.

• Make sure students understand the binomial theorem.

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk

For instance, what is the coefficient of x13y2011 in (x+y)2024? In addition,
make sure they understand the special cases of the binomial theorem in
(1 + 1)n and (1− 1)n. Each of these two has an equivalent fact:

(1 + 1)n =

n∑
k=0

(
n

k

)
= 2n

but the sum represents the number of subsets, so we re-establish what we knew

(1− 1)n =

n∑
k=0

(
n

k

)
(−1)k =

∑
k is even

(
n

k

)
−

∑
k is odd

(
n

k

)
= 0n

the number of subsets with even size is is equal to the number of subsets with odd size

Recitation 6

• Practice anagrams and the formula n!
n1!n2!...nm!

• Use the Pascal triangle to show the following identity:(
k − 1

k − 1

)
+

(
k

k − 1

)
+ . . .+

(
n− 1

k − 1

)
=

(
n

k

)
One can show the identity by starting with the Pascal triangle property:(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
Then use (

n− 1

k

)
=

(
n− 2

k − 1

)
+

(
n− 2

k

)
and keep on replacing the last term using the Pascal triangle property,
until we end up with

(
k
k

)
which can be replaced by

(
k−1
k−1

)
.

As a combinatorial argument, consider the set S = {1, 2, . . . , n}. The
binomial coefficient

(
n
k

)
is the number of subsets of size k. The binomial

coefficient
(
n−i
k−1

)
is the number of subsets of size k containing i as the

smallest element. By summing over i = 1 . . . n− k + 1 using the addition
rule, we obtain the result.
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• Counting with bijection: (another example) A ball is dropped as shown
below. Upon hitting a bump, it will go either left or right. We have 2n
rows of bumps, where n ∈ N. The figure shows n = 2.

– How many paths bring the ball to the middle of the last row? Think
of a bijection with a set of binary patterns. The key is to consider
binary patterns with n 1s and n 0s. Establish a bijection between
paths that bring the ball to the center of the last row and those.
Finally, conclude that the number of those paths must be

(
2n
n

)
.

• Make sure students understand why the following three are logically equiv-
alent:

P ⇒ Q,¬P ∨Q,¬Q ⇒ ¬P

• Make sure students understand if and only if (iff) and that ⇔ says it:

P ⇔ Q

P if and only if Q

P iff Q

P Q P ⇔ Q
0 0 1
0 1 0
1 0 0
1 1 1

• Make sure the students understand that the following is the negation of
P ⇒ Q

P ∧ ¬Q

For instance, use DeMorgan’s law:

¬(P ⇒ Q) ⇔ ¬(¬P ∨Q) ⇔ (P ∧ ¬Q)︸ ︷︷ ︸
DeMorgan’s

• What is the contrapositive of: r2 is irrational ⇒ r is irrational.
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• How many Boolean functions on n variables are there? 22
n

(why?)

• Put a Boolean function on three variables x, y, and z on the board and
have the students figure out the logical expression using ¬,∨,∧

• Draw analogy of associative, commutative, and distributive properties of
sets operators ∩, ∪, and logical operator ∧ and ∨

Associative:
(A ∩B) ∩ C = A ∩ (B ∩ C)

(A ∧B) ∧ C = A ∧ (B ∧ C)

(A ∪B) ∪ C = A ∪ (B ∪ C)

(A ∨B) ∨ C = A ∨ (B ∨ C)

Commutative:
A ∩B = B ∩A

A ∧B = B ∧A

A ∪B = B ∪A

A ∨B = B ∨A

Distributive:
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C)
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Recitation 7

This recitation will mainly focus on proofs. You can come up with your own
examples to illustrate proofs by contradiction, contrapositive, iff, etc... The
first two below are existential proofs (which we have not covered explicitly in
lectures).

• Introduce the idea of existential proofs. For instance, prove that there
exists an even prime number. Here, it’s enough to exhibit an example.
Actually, the only example is the prime number 2.

• Sometimes, we can show the existence, without finding an actual example:
non-constructive existential proof. For example, prove that if a < −1, then
eax + ex = 2 has a positive solution. First, consider the function

f(x) = eax + ex − 2

The first derivative of f(x) is aeax + ex, which is equal to a+ 1 < 0 when
x = 0. Furthermore, the second derivative of f(x) is a2eax + ex, which
is always positive (function is concave). Therefore, starting at f(0) = 0,
f(x) decreases, but increases back to infinity. Therefore, f(x) must cross
0 for some x > 0.

• Proofs by parity: consider an 5 × 5 chessboard. Consider removing one
square. Depending on the color, white or black, of the removed square,
which chessboard is coverable by dominos?

• Proof by contradiction: Prove that x3+x+1 = 0 does not have any rational
solutions. Proceed by assuming that is does; for instance, x = a/b where a

and b are integers. Write a3

b3 +
a
b +1 = 0, and rewrite it as a3+ab2+b3 = 0.

Find a contradiction by going through all cases of even and odd for a and
b.

• Prove using the contrapositive: x+ y is odd ⇒ x ̸= y.

• Illustrate why if P ⇒ True is true, then P is not necessarily True. You
can show this using the truth table of ⇒, since you will find two rows that
make the implication true for different values of P .

• Prove iff. For instance, every element of S is even iff every subset of S has
even sum. Here P is “every element of S is even”, and Q is “every subset
of S has even sum”. We want to prove P ⇔ Q is true.

– P ⇒ Q: If every element is even, then since the sum of even elements
is even, every subset will have an even sum.

– Q ⇒ P : If every subset has an even sum, then the property applied
to the singletons means every element is even.
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Recitation 8

• One indication of understanding Cantor’s proof is to understand the an-
swer to this question: Why does Cantor’s diagonalization proof break if
we replace R by Q? The answer is that the number constructed to create
a contradiction may not be in Q.

• Go over some sets of your choice. Examples include: the set of all watches
made on Earth, The set of positive real numbers that are smaller than
some fixed ϵ, the set R−Q, the set Z3, the set of all finite words that can
be made from the alphabet {a, . . . , z}, ...

• How many n bit binary patterns either start with 1 or end with 0? Let
S1 be the set of all binary patterns that start with 1. Similarly, let S0 be
the set of all binary patterns that end with 0. We want |S1 ∪ S0. Using
inclusion exclusion:

|S1 ∪ S0| = |S1|+ |S0| = |S∩S0| = 2n−1 + 2n−1 − 2n−2

= 2 · 2n−1 − 2n−2 = 2n − 2n−2 = 2n−2(4− 1) = 3 · 2n−2

Note: do you see why there is a 3? (Hint: There are 3 ways of setting the
first and last bits).

• In how many ways can we color n objects using Red, Green, and Blue,
if we insists that every color must be used? Inclusion-Exclusion can help
find the number of ways we can color the objects if some color is missing.
Let SR be the set of colorings that do not include Red. Define SG and SB

in the same way. Then:

|SR∪SG∪SB | = |SR|+|SG|+|SB |−|SR∩SG|−|SR∩SB |−|SG∩SB |+|SR∩SG∩SB|

Now

– |SR| = |SG| = |SB | = 2n

– |SR ∩ SG| = |SR ∩ SB | = |SG ∩ SB | = 1

– |SR ∩ SG ∩ SB | = 0 We obtain:

2n + 2n + 2n − 1− 1− 1 + 0 = 3 · 2n − 3

Therefore, the answer to the original questions would be 3n−(3 ·2n−
3) = 33 − 3 · 2n + 3.

• Given the set {1, 2, . . . , 100}, show that if we select 6 numbers, two of
them, say x and y, must satisfy |x−y| ≤ 19. The idea is to use Pigeonhole.
Divide the numbers into 5 ”boxes” as follows:

1 . . . 20, 21 . . . 40, 41 . . . 60, 61 . . . 80, 81 . . . 100

Since we select 6 numbers, two must come from the same box, which
means two must have a difference of at most 19.
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• A person cannot have more than 500,000 strands of hair on his/her head.
In a city of 10 million people, show that at least 20 people must have the
same number of hair strands. Another obvious use of Pigeonhole: There
are 500,001 possible values for the number of strands {0, 1, . . . , 500, 000}.
We place 10 pillion people in 500,001 boxes. By Pigeonhole, at least one
box must contain at least ⌈10000000/500001⌉ = 20 people.

• Given 6 points on the perimeter of a rectangle, show that you can cut the
rectangle into two pieces of the same area such that at least 4 points are in
one piece. Here we have to be smart about it since the Piegonhole will give
⌈6/2⌉ = 3, which is not enough. Idea: pick a point on the perimeter and
cut the rectangle by a line that goes through that point and the center.
By symmetry, both pieces have the same area. Now, for the remaining 5
points, one piece must contain at least ⌈5/2⌉ = 3 of them. With the initial
point being in ”both” pieces, we have our 4 points.

Recitation 9

For this recitation, focus on proofs by Induction. You could also cover topics in
inclusion-exclusion and pigeonhole based on students questions. For all proofs
focus on the following:

• What the base case/s is/are. What n0 is (the largest base case).

• Express the inductive hypothesis P (k) (or ∧i≤kP (i) for strong induction),
and P (k + 1)

• Emphasize the inductive step ∀k ≥ n0, P (k) ⇒ P (k+1), or ∀k ≥ n0,∧i≤kP (i) ⇒
P (k + 1) (for strong induction)

Here are some ideas for proofs by induction.

• Prove that
∑n

i=1(2i− 1) = n2 for all n ∈ N

– n0 = 0

– P (k) :
∑k

i=1(2i− 1) = k2

– P (k + 1) :
∑k+1

i=1 (2i− 1) = (k + 1)2

• Prove that
∑n

i=0 a
i = an+1−1

a−1 for all n ≥ 0 if a ̸= 1

– n0 = 0

– P (k) :
∑k

i=0 a
i = ak+1−1

a−1

– P (k + 1) :
∑k+1

i=0 ai = ak+2−1
a−1
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• Prove that n(n+ 1)(2n+ 1) is divisible by 6 for all n ≥ 0.

– n+ 0 = 0

– P (k) : k(k + 1)(2k + 1) = 6m

– P (k + 1) : (k + 1)(k + 2)(2k + 3) = 6m′

– Inductive step: (this might be a little involved) The trick is to expend
(k+1)(k+2)(2k+3) while exposing k(k+1)(2k+1). The easiest way
is to show that the difference is a multiple of 6, as follows: (k+1)(k+
2)(2k+3)− (k(k+1)(2k+1) = (k+1)[((k+2)(2k+3)−k(2k+1)] =
(k + 1)(2k2 + 3k + 4k + 6− 2k2 − k) = (k + 1)(6k + 6) = 6(k + 1)2.
Therefore, (k + 1)(k + 2)(2k + 3) = 6m+ 6(k + 1)2 = 6m′.

• (strong induction) Prove that every integer in N can be expressed as a
sum of distinct powers of 2.

– n0 = 1

– ∧i≤kP (i) : every integer up to k is a sum of distinct powers of 2

– P (k + 1) : k + 1 is a sum of distinct powers of 2

– Inductive step: if k+1 is odd, then k+1 = 2m+1 = 2m+20 where
m ≤ k. By the inductive hypothesis, m is a sum of distinct powers of
2. Therefore, 2m is also a sum of distinct powers of 2, none of which
is 20 = 1. So k + 1 is a sum of distinct powers of 2. If k + 1 is even,
then k+1 = 2m where m ≤ k. By the same argument above, k+1 is
a sum of distinct powers of 2. Now, to make sure that the base case
is sufficient, observe that the proof works only if m ≤ k. In the first
case m = k/2, and in the second case m = (k + 1)/2. So we need
(k + 1)/2 ≤ k, which means the proof works for k ≥ 1. That’s n0.

• (strong induction) Let a0 = 1, a1 = 1, and an = an−1 + 2an−2 for n ≥ 2.

Prove that an = 2n−(−1)n

3 for all n ≥ 0.

– n0 = 1, the bases cases are for n = 0 and n = 1

– ∧i≤kP (i) : ai = [2i − (−1)i]/3 for all i ≤ k

– P (k + 1) : ak+1 = [2k+1 − (−1)k+1]/3

– Inductive step: (use recurrence, of course what else!) ak+1 = ak +
ak−1 = [2k − (−1)k]/3 + 2[2k−1 − (−1)k−1]/3 = [2k − (−1)k + 2k −
2(−1)k−1] = [2 · 2k + (−1)k+1 − 2(−1)k+1]/3 = [2k+1 − (−1)k+1]/3.
The proof works if k + 1 ≥ 2 so we can apply the recurrence, which
means k ≥ 1, and that’s n0.
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Recitation 10

• Solving linear homogeneous recurrences using the characteristic equation
method.

– an = 5an−1 − 6an−2 for n ≥ 3, a1 = 1, a2 = 4. The characteristic
equation is x2 = 5x − 6, which has solutions p = 2 and q = 3.
Therefore, an has the form an = c12

n + c23
n. Solve for c1 and c2

using a1 and a2. We get an = − 1
22

n + 2
33

n.

– an = 8an−1 − 16aan−2 for n ≥ 2, a0 = 1, a1 = 12. The characteristic
equations is x2 = 8x− 16, which has solutions p = q = 4. Therefore,
an as the form an = c14

n + c2n4
n. Solve for c1 and c2 using a0 and

a1. We get an = 4n + 2n4n.

• Turning recurrences into linear homogeneous.

– an = 3an−1+2n. Consider the recurrence for n− 1: an−1 = 3an−2+
2n−1.

an = 3an−1 + 2n

an−1 = 3an−2 + 2n−1

an − 2an−1 = 3an−1 + 2n − 6an−2 − 2n

an = 5an−1 − 6an−2

• Higher order recurrences.

– an = 4an−1−3an−2+2n for n ≥ 3, a1 = 1, a2 = 11. Using the above
method, we can turn this recurrence into a homogeneous linear one,
to obtain

an = 6an−1 − 11an−2 + 6an−3, for n ≥ 4

In addition, knowing a1 and a2, we can find a3 = 49. The character-
istic equation is

x3 − 6x2 + 11x− 6 = 0

One can guess that p = 1 is a solution. Therefore, we can factor
(x− 1). We get

(x− 1)(x2 + ax+ 6) = 0

It is then easy to find that a = −5 by matching powers. So we have:

(x− 1)(x2 − 5x+ 6) = 0

which has solutions p = 1, q = 2, and r = 3. Therefore, an has the
form an = c1 + c22

n + c33
n. We solve for c1, c2, and c3 using a1, a2,

and a3. We get
an = 0 · 1n − 4 · 2n + 3 · 3n
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Recitation 11

• Talk about divisibility, make sure students are comfortable with notation.
For two integers a and b, all the following are equivalent:

– a|b (notation)

– a divides b

– a is a divisor of b

– b is a multiple of a

– ∃m ∈ Z, b = ma (definition)

Furthermore, even if a does not divide b, notated by a ∤ b, we can still
relate a and b as follows:

b = aq + r

where 0 ≤ r < a with a|b iff r = 0. The constraint that 0 ≤ r < a makes
this representation involving a and b unique. We call a the quotient of the
division of b by a, and r its remainder.

• A common divisor of a and b is an integer d such that d|a ∧ d|b. One
important concept is the greatest common divisor of two integers a and b,
denoted by gcd(a, b). The gcd(a, b) is defined as the largest d such that d
is a common divisor of a and b. This concept is well-defined because:

– 1 is always a common divisor, so a common divisor exists

– a divisor d of a must satisfy d ≤ a; therefore, gcd(a, b) ≤ min(a, b),
so the largest common divisor exists

• Finding the greatest common divisor has many applications in mathe-
matics and computer science. It can be done by brute force: simply go
through the set of all divisors of a and the set of all divisors of b, and find
the largest that is in the intersection of both sets. Here’s an example of
finding gcd(300, 18):

D300 = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 300}

D18 = {1, 2, 3, 6, 9, 18}

D300 ∩D18 = {1, 2, 3, 6}

Therefore, gcd(300, 18) = 6

• Amore efficient way of finding gcd(a, b) is based on the following important
observation: Assume a = bq + r, then

d|a ∧ d|b ⇔ d|b ∧ d|r
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This means gcd(a, b) = gcd(b, r). For instance,

gcd(300, 18) = gcd(18, 12) = gcd(12, 6) = gcd(6, 0)

which corresponds to the following decreasing sequence (the sequence
reaches 0 quickly):

300, 18, 12, 6, 0

Can you see the answer?

Recitation 12

Practice the extended Euclidean algorithm to find the gcd(a, b), and when
gcd(a, b) = 1, to find the inverse of a modulo b.

• Find gcd(1180, 482)

• Find the inverses of {1, 2, 3, 4, 5, 6} modulo 7

• Find gcd(127, 5) and the inverse of 5 modulo 127. Using this information,
solve 5x = 36 (mod 127).

• Solve
12x+ 31y ≡ 2 (mod 127)

2x+ 89y ≡ 23 (mod 127)

Let’s multiply the second equation by 6.

12x+ 534y ≡ 138 (mod 127)

and by observing that 534 is 26 and 138 is 11 modulo 127, we can write:

12x+ 26y ≡ 11 (mod 127)

By subtracting, we get 5y ≡ −9 (mod 127), and since −9 is 118 modulo
127, we have

5y ≡ 118 (mod 127)

We need the inverse of 5 modulo 127. The Euclidean algorithm:

127 5 2 1 0
1 0 1 -2
0 1 -25 51

Therefore, the inverse of 5 modulo 127 is 51. We finally conclude that y
must be 51 · 118 = 6018 modul0 127. So y = 49.

Replacing in the first equation, we have 2x+31 ·49 ≡ 2 (mod 127), which
can be written as

2x ≡ −4338 (mod 127)

So 2x ≡ 107 (mod 127) (because −4338 = −35 · 127 + 107). Using the
Euclidean algorithm again, one can find that the inverse of 2 modulo 127
is −63 modulo 127, which is 64. So x ≡ 64 · 107 = 6848 (mod 127), and
x = 117.
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Recitation 13

Go over equivalence relations and partial order relations. Use Lectures 32 and
33 as a guide.

Recitation 14

Go over prime numbers and Fermat’s Theorem. Use Lectures 34 and 35 as a
guide.

Use Fermat’s Theorem to find

2124 mod 127

We know that 2126 ≡ 1 (mod127), and 2124 = 2−22126 = 4 · 2126. So 2124 ≡
2−2 = 4−1 (mod 127). So that’s the inverse of 4 modulo 127, which is 32 (do
the extended Euclidean algorithm)

Consider an RSA key set with p = 17, q = 23, and e = 3. What value of d
should be used for the secret key? What is the encryption of the message 41?
352 3 1 0
1 0 1
0 1 -117
So the answer is -117, which is the same as 235 modulo 352.

The private key d is the inverse of e modulo (p − 1)(q − 1), so this is the
inverse of 3 modulo 352. The encryption of 41 is 41e mod n, where n = pq. So
this is 68921 mod 391 = 105.

Recitation 15

Go over graphs. Use Lectures 36 and 37 as a guide.
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