ordered selection of k out of n
\# k-permutations
phase
1.
2.
3.

K.

$$
n(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

unordered selection of k out of n
\# Combinations

- In this case, every permutation of the k choices in the above process produces an equivalent outcome
- The above process overcounts by k !
- $\binom{n}{k}=\frac{n!}{(n-k)!k!}$
- $\binom{n}{k}$ is the number of subsets of $S=\{1,2,3, \ldots, n\}$ of size K. For example, if $S=\{1,2,3,4,5\}$, there are $\binom{5}{3}=10$ subsets of 5 of size 3 .
$\{1,2,3\}\{1,2,4\}\{1,2,5\}\{1,3,4\}\{11,5\}\{1,4,5\}\{2,3,4\}\{2,3,5\}\{2,4,5\}\{3,4,5\}$
ordered selection of k out of n with repetition
phase

1.
2.
3.

k.

$$
\underbrace{n \times n \times \ldots \times n}_{k}=n^{k}
$$

	repetition	no repetition		
order	n^{k}	$\frac{n!}{(n-k)!}$		
no order	$?$	$\binom{n}{k}$	\quad	Later η
:---				

Examples: Given n movies, select the best $k:\binom{n}{k}$

- Same, but rank theme: $\frac{n!}{(n-k)!}$
- Given k movie nights and n movies, select what to watch: n^{k}

Be careful about "order"

- ordered selection vs. unordered selection must be chosen as a model rather than being literal
- Example: - choose a sequence of 3 letters from the alphabet (no repetition) such that letters appear in alphabetical order
- choose a sequence of 3 letters from the alphabet (no repetition) in any order
The first is $\binom{26}{3}$ and the second is $\frac{26!}{(26-3)!}$ despite the wording!
$\binom{n}{k}$ as a special case of anagrams.
- Consider permuting the letters in MISSISSIPPI This can be done in 11! ways (11 letters). But for each anagram obtained, permuting all $I^{\prime} s$ or all S_{s}^{\prime} or all P^{\prime} would still produce the same anagram.
So to account for over counting, we have $\frac{11!}{4!4!2!}$
- In general, if we have k letters, and letter i occurs n_{i} times, the \# anagrams is $\frac{n!}{n_{n}!n_{2}!\cdots n_{k}!}, n=\sum_{i=1}^{k} n_{i}$
- ($\left.\begin{array}{l}n \\ k\end{array}\right)$ can be thought of as number of anagramens with k 1's and $(n-k)$ o's, so $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

