Discrete Math
Csc 150 Math for Computer Scientists Math for Dairy Life / puzzles
"Sand" Mneimneh, saadehunter.cuny.edu HA $10^{\text {th }}$ floor 1090 L Office Hours: the 10:15-11:15, 1:00-2:00 "Read your hunter email memmhunter.cony.eder"

Discrete Math:

- Counting/combinatorics
- Proofs
- Number Theory (study integers \& properties)
- Functions/relations/sets
- Graph theory

Example: Birthday Paradox

- Estabsshed by Counting
- Proofs: Can you prove that we have infinitely many primes?
- Number Theory

Two games

Came 1:
Pick an integer $x>0$

- x is even: $x<x / 2$
$-x$ is odd : $x \in 3 x+1$
- Repeat

En: $10,5,16,8,4,2,0$

Game 2
Example: 4 integers.

$$
\begin{aligned}
& (2,3,4,5) \\
& (1,1,1,3) \\
& (0,0,2,2) \\
& (0,2,0,2) \\
& (2,2,2,2) \\
& (0,0,0,0)
\end{aligned}
$$

Puzale:

Sequences: exauple: Fibonacci

$$
{ }^{0,1}, 1,2,3,5,8,13, \ldots
$$

$\underbrace{\text { Recurrences }}_{\text {Def. beckrigue }}$ Indection $\underbrace{\text { Len }}_{\text {prof bechunque }}$

- Sums: $1+2+3+4+5+\cdots+n=\frac{n(n+1)}{2}$

Example: $n=1: 1$

$$
\begin{array}{ll}
n=2: & 3 \\
n=3: & 6 \\
n=4: & 10
\end{array}
$$

Geometric Interpretation:

Area of grey triangle: $\frac{n^{2}}{2}$
Area of small triangle: $\frac{|x|}{2}=\frac{1}{2}$
Total: $\frac{n^{2}}{2}+n \times \frac{1}{2}=\frac{n(n+1)}{2}$

$$
\begin{aligned}
& T_{n}=1+2+\cdots+n \\
& T_{1}=1, T_{2}=3, T_{3}=6, T_{4}=10, \ldots \\
& \quad T_{n}=T_{n-1}+n: \text { Recurrence }
\end{aligned}
$$

Triangular Numbers.

Graphs: people:

Nasty Neighbors

can't be done without overlap

Planar Graph
Graph that you can draw in the plane without overlap.

Not planar

\rightarrow

$$
\begin{aligned}
& V=9 \\
& e=11 \\
& f=4
\end{aligned}
$$

Euter's: $v-e+f=2$ Formula

$$
\begin{aligned}
& 1+2+3+\cdots+n=\frac{n(n+1)}{2} \\
& 1 \times 2 \times 3 \times \ldots \times n=n!
\end{aligned}
$$

"Factorial of n "
"n Factorial"
" n !"

$$
\begin{aligned}
& 1!=1 \\
& 2!=1 \times 2=2 \\
& 3!=1 \times 2 \times 3=6 \\
& 4!=1 \times 2 \times 3 \times 4=24
\end{aligned}
$$

