More proofs
Consider a $n \times n$ board. (n is even)

(Example $n=4$)

Dominus:

Can we cover the board with Domino?

If we delete 2 opposite corners
 can we still cover the board with Dominus?

P: Two opposite corners are deleted
Q: Board is not coverable
$(P \Rightarrow Q)$ is true.
Proof by contradiction:
How would I start:
Start with $P \wedge \neg Q$ (that's the negation of $P \Rightarrow Q$)
Parity argument: make every square even or odd 2 adjacent squares have different painty.
e.g. Square is even if sum of its coordinates is even

n even means that
\# even square $=$ \# odd squares

P: Two opposite corners deleted
\Rightarrow two square of the same parity deleted
\Rightarrow \# even square \# abl squares
$7 Q$: board is coverable
\Rightarrow every Domino covers two adjacent square with deferent panty
\Rightarrow \# even square $=$ \# od t square
$P \wedge \neg Q \Rightarrow$ False. Thenfore $(P \Rightarrow Q)$ is tine

Prove by contradiction that primes are infinite

Prime are finite \Rightarrow the set of prime numbers is finite \Rightarrow say it's $P=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{k}\right\}$ where $k \in \mathbb{N}$

$$
\text { Magic }\left(\operatorname{Lght} \text { bulb):, } n=1+\prod_{i=1}^{k} p_{i}, n \in \mathbb{N}\right.
$$

$\Rightarrow n$ is not divisible by any of the prime numbers (division has remainder 1) a contradiction since every integer can be factored into primes.

Generalizing even [odd results
Prove: (1). n even $\Rightarrow n^{k}$ even,$k \in \mathbb{N}$
(2). n odd $\Longrightarrow n^{k}$ odd, $k \in \mathbb{N} \cup\{0\}$
(1): n is even $\Rightarrow n=2 m, m \in \mathbb{Z}$

$$
\begin{aligned}
& \Rightarrow n^{k}=(2 m)^{k}=2^{k} \cdot m^{k}=2(\underbrace{2^{k-1} \cdot m^{k}}_{\in \mathbb{Z} ?}) \\
&=2 \cdot m^{\prime}, m^{\prime} \in \mathbb{Z} \\
& \Rightarrow n^{k} \text { is even. }
\end{aligned}
$$

(2)

$$
\begin{gathered}
n \text { is odd } \Rightarrow n=(2 m+1), m \in \mathbb{Z} \\
\Rightarrow n^{k}=(2 m+1)^{k} \\
=\underbrace{\binom{k}{0}(2 m)^{k}+\binom{k}{1}(2 m)^{k-1}+\cdots\binom{k}{k-1}(2 m)^{\prime}}_{\in \mathbb{Z}}+\binom{k}{k}(2 m)^{0} \\
2\left[\begin{array}{l}
\left(\begin{array}{l}
k \\
0
\end{array} 2^{k-1} m^{k}+\cdots \cdots+\binom{k}{k-1} m\right]
\end{array}\right)
\end{gathered}
$$

$\Rightarrow n^{k}$ is odd

Prove: There is no smallest positive rational number.
Let $x>0$ be the smallest positive rational number let $y=\frac{x}{2} \quad\left(y>0, y \in \mathbb{Q}\right.$ because if $x=\frac{a}{b}$ tran $\left.y=\frac{a}{2 b}\right)$ contradiction since $y<x$.

Prove: $\overbrace{n \text { odd }}^{P} \Rightarrow \overbrace{n=a^{2}-b^{2} \text { where } a, b \in \mathbb{Z}}^{Q}$

$$
\begin{aligned}
n \text { is odd } \Rightarrow n & =2 k+1 \quad, k \in \mathbb{Z} \\
& =\underbrace{(k+1)^{2}}_{k^{2}+2 k+1}-k^{2}
\end{aligned}
$$

contrapositive: $n \neq a^{2}-b^{2} \Rightarrow n$ is even.
The contrapositive is not very helpful here.
It's easier to express " $=$ " than " \neq "

