

If we delete 2 opposite corners can we still cover the board with Dominos ? P: Two opposite corners are deleted Q: Board is not coverable $(P \Rightarrow Q)$ is true. Proof by contradiction: How would I start: Start with $P \wedge 7Q$ (that's the negation of $P \Rightarrow Q$) Parity argument: make every square even or odd 2 adjacent squares have different party. e.g. Square is even if sum of its coordinates is even

P: Two opposite corners deleted

=> two square of the same parity deleted

- n even means that
- # even Equare = # odd Equares

7Q: board is coverable

PATQ => False. Therfore (P=>Q) is time

Prove by Contradiction that primes are infinite.

Prime are finite => the set of prime numbers is finite \Rightarrow say it's $P = \{P_1, P_2, P_3, \dots, P_k\}$ where $k \in \mathbb{N}$ Magic (Light bulb): n = 1 + Ttp, $n \in N$ => n is not divisible by any of the prime numbers (division has remainder 1) a contradiction since every integer can be factorned into primes.

Generalizing even/odd results Prove: (1). $n even \rightarrow n^{k} even$, ke N (2) · n odd \implies n^k odd , ke NU{o} (1): n îs even => n=2m, m E Z $\implies n^{k} = (2m)^{k} = 2^{k} \cdot m^{k} = 2(2^{k-1} \cdot m^{k})$ ∈ℤ ? Yes = 2.m', m' E Z ⇒ nk is even.

 $n \text{ is odd} \implies n = (2m + i), m \in \mathbb{Z}$ (2) : $\Rightarrow n^{k} = (2m+1)^{k}$

 $= {\binom{k}{0}}{\binom{2m}{+}} {\binom{k}{1}}{\binom{2m}{+}} {\binom{k}{-1}}{\binom{2m}{+}} {\binom{k}{-1}}{\binom{2m}{+}} {\binom{k}{-1}}{\binom{2m}{+}} {\binom{k}{-1}}{\binom{2m}{+}} {\binom{k}{-1}}{\binom{2m}{-1}} {\binom{k}{-1}} {\binom{k$

=> n k is odd

Prove: There is no smallest possitive rational number.

let
$$y = \frac{x}{2}$$
 ($y > 0$, $y \in \mathbb{R}$ because if $x = \frac{a}{b}$ then $y = \frac{a}{2b}$)

Prove : $n \text{ odd} \implies n = a^2 - b^2$ where $a_1 b \in \mathbb{Z}$

n is odd \implies n = 2k + l, $k \in \mathbb{Z}$

 $= (k+1)^2 - k^2$ $k^{2}+2k+1$

contrapositive: $n \neq a^2 - b^2 \Rightarrow n$ is even.

The contrapositive is not very helpful here. It's easier to express "="than " \pm "