Infinity and Beyond
S is Countable set :

- S is Finite, or
- There exists a function $f: S \rightarrow \mathbb{N}$ (or $f: \mathbb{N} \rightarrow S$) that is a bijection. (S and N have the same Cardinality)
Example: $\quad f: \mathbb{N} \rightarrow\{2,4,6,8, \ldots\}$

$$
f(x)=2 x
$$

one-to-one: $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$
onto: $y \in\{2,4,6,8, \ldots\}$, let $x=\frac{y}{2} \in \mathbb{N}, f(x)=y$

Alternative definition:
S is countable if there exist a function $f: s \rightarrow \mathbb{N}$ that is one-to-one

Informal interpretation: f "orders" the elements of s.
Each element must have a finite rank

- If S is countable and $T \subset S$, then T is countable

- Preserve the relative order of elements in T.
- each element in T has a rank that is at most its rank is S.
- each element in T has a finite rank

- If A and B are countable, then $A \cap B$ is countable

$$
(A \cap B) \subset A
$$

since A is countable, then
$A \cap B$ is also countable.

- If A and B are countable, then $A \cup B$ is countable

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \\
& B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}
\end{aligned}
$$

$$
\text { consider } \begin{aligned}
A \cup B & =\left\{a_{1}, a_{2}, a_{3}, \ldots, b_{1}, b_{2}, b_{3}, \ldots\right\} X \\
A \cup B & =\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right\}
\end{aligned}
$$

Rank of $b_{i}: 2 i$

$$
a_{i}: 2 i-1
$$

Is \mathbb{Z} countable

$$
\begin{aligned}
& \mathbb{Z}=\left\{\begin{array}{c}
\text { countable } \\
\mathbb{Z}=\underbrace{\{0\} \cup \mathbb{N}}_{\sim,-3,-2,-1,0,1,2,3, \ldots\}} \cup \underbrace{\{:-1,-2,-3, \ldots\}} \\
f(x)=-x
\end{array}\right.
\end{aligned}
$$

countable
is a bijection

Another way: Find the bijection

$$
f(x)=\left\{\begin{array}{cc}
2 x & x>0 \\
-2 x+1 & x \leq 0
\end{array} \quad\right. \text { (Bijection) }
$$

Is Q countable

If A and B are countable, then $A \times B$ is countable

$$
A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \quad B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}
$$

we can "thai" of Q as a "subset" of $\mathbb{Z} \times \mathbb{N}$

$$
\frac{a}{b} \operatorname{"as}^{\prime \prime}(a, b)
$$

\mathbb{R} is uncountable (fay!)
There is No bijection f

$$
f: \mathbb{N} \rightarrow \mathbb{R}
$$

Proof by contradiction: Cantor's diagonal proof
Let $f: \mathbb{N} \rightarrow \mathbb{R}$. We will construct $x \in \mathbb{R}$ such that no $i \in \mathbb{N}$ satisfies $f(i)=x$.
So if f is a bijection, we have a contradiction (it's not onto).

Fins for every $r \in \mathbb{R}$, we will refer to the $i^{\text {th }}$ digit of \mathbb{R} as the $i^{\text {th }}$ digit following the decimal point in r 's representation.

We will make $x=0 . x_{1} x_{2} x_{3} \ldots$

$$
\text { where digit } x_{i}+\underbrace{i{ }^{\text {th }} \text { digit of } \frac{f}{f(i)}}_{\text {well defined concept }}
$$

There is no $i \in \mathbb{N}$ such that $f(i)=x$ because x is different from $f(i)$ in the it digit.

