Summary:
To show that an infinite set S is countable
Formal way: Show there exist $f: S \rightarrow \mathbb{N}$ that is a bijection

Fyformal way: order the elements of S such that each will have a finite rank

Fact: S is countable, any subset of S is countable A and B are countable, then $A \cup B, A \cap B, A \times B$ are countable.
\mathbb{R} is uncountable (fay!)
There is No bijection f

$$
f: \mathbb{N} \rightarrow \mathbb{R}
$$

Proof by contradiction: Cantor's diagonal proof
Let $f: \mathbb{N} \rightarrow \mathbb{R}$. We will construct $x \in \mathbb{R}$ such that no $i \in \mathbb{N}$ satisfies $f(i)=x$.
So if f is a bijection, we have a contradiction (it's not onto).

Fins for every $r \in \mathbb{R}$, we will refer to the $i^{\text {th }}$ digit of r as the $i^{\text {th }}$ digit following the decimal point in r 's representation.

We will make $x=0 . x_{1} x_{2} x_{3} \ldots$

$$
\text { where digit } x_{i}+\underbrace{i{ }^{\text {th }} \text { digit of } \frac{f}{f(i)}}_{\text {well defined concept }}
$$

There is no $i \in \mathbb{N}$ such that $f(i)=x$ because x is different from $f(i)$ in the it digit.

Given any set S_{1} using a similar diagonal proof we can show there is no bijection from s to $\rho(s)$

any set in
between?
"the continuum hypothesis" is independent of the axiams of set theory (can't prove it or disprove it!)
"Example" diagonalization

N	\mathbb{R}
1	$0.500000 \ldots$
2	$0.1415 \ldots$
3	$0.7130000 \ldots$
4	$0.860100 \ldots$
5	$0.3333333 \ldots$

$$
x=0.21212 \ldots
$$

Inclusion - Exclusion
Basic setting:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

(why ?)
Example: 50 socks 35 black

How many ave black and cotton?

$$
\begin{aligned}
& |A \cup B|=|A|+|B|-\overbrace{|A \cap B|}^{?} \\
& 50=35+30-|A \cap B| \\
& (A \cap B)=15
\end{aligned}
$$

What about multiple sets

$$
\begin{aligned}
|A \cup B \cup C| & =|A|+|B|+|C| \\
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

Four sets:

$$
\begin{aligned}
|A \cup B \cup C \cup D| & =|A|+|B|+|C|+|D| \quad \text { (include) } \\
& -|A \cap B|-|A \cap C|-|A \cap D|-|B \cap C|-|B \cap D|-|C \cap D| \quad \text { (exclude) } \\
& +|A \cap B \cap C|+|A \cap B \cap D|+|A \cap C \cap D|+|B \cap C \cap D| \quad \text { (include) } \\
& -|A \cap B \cap C \cap D| \quad \text { (exclude) }
\end{aligned}
$$

\# terms

Why it works?
Consider an element that is in a sets.

- It belongs to $\binom{n}{1}$ sets
- It belongs to ($\binom{n}{2}$ pairs of sets.
- It belongs to ($\left.\begin{array}{l}n \\ 3\end{array}\right)$ triplets of sets
- It belongs to $\binom{n}{n} n$-tuple of sets

$$
\begin{aligned}
\text { \# Limes element is } & =\binom{n}{1}-\binom{n}{2}+\binom{n}{3}-\binom{n}{4}+\ldots+(-1)^{n-1}\binom{n}{n} \\
& =\binom{n}{0}-\left[\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\ldots+(-1)^{n}\binom{n}{n}\right] \\
& =1-0^{n}=\left\{\begin{array}{l}
n=0: 1-0^{0}=1-1=0 \\
n>0: 1-0^{n}=1-0=\{
\end{array}\right.
\end{aligned}
$$

Example: How many positive integers $\leqslant 1000$ are divisible by 2 or 3 or 5 ?
 if p, q are prime:
n divisible by both $\Leftrightarrow n$ divisible by $p q$

$$
\begin{aligned}
&\left|s_{2} \cup s_{3} \cup s_{s}\right|=\left|s_{2}\right|+\left|s_{3}\right|+\left|s_{S}\right|-\left|s_{2 n}\right|-\left|s_{2} \cap s_{S}\right|-\left|s_{3} \cap S_{S}\right| \\
&+\left|s_{2} \cap s_{3}\right| S_{s} \mid \\
&=\left\lfloor\frac{1000}{2}\right\rfloor+\left\lfloor\frac{1000}{3}\right\rfloor+\left\lfloor\frac{1000}{5}\right\rfloor \\
&-\left\lfloor\frac{1000}{6}\right\rfloor-\left\lfloor\frac{1000}{10}\right\rfloor-\left\lfloor\frac{1000}{15}\right\rfloor+\left\lfloor\frac{1000}{30}\right\rfloor=?
\end{aligned}
$$

