Recall from Inclusion-Exclution formula

$$
\begin{aligned}
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

How many passwords of length n are there

$$
\Sigma=\{A, \ldots, z, a, \ldots, z, 0, \ldots, q\}
$$

Answer: 62^{n}
Good password has at least one upper case and one lower case and one digit

Bad password

Lazy Professor
How many permutations of $(1,2,3, \ldots, n)$ are there if every number i does not occur in position i
"Derangerments"
This is an "AND" logic.
Initial attempt. (Fails)

1. Choose a position for 1
2. choose a position for $2 \ldots$
can't tell!

Depends on choice
for 1 for 1

Bad permutation:
1 is in the first position or
2 is in the second position, or
3 is ". "third position, On

n is in the $n^{\text {th }}$ position.

$$
\begin{aligned}
& n .(n-1)!-\binom{n}{2}(n-2)!+\binom{n}{3}(n-3)!\cdots \frac{n!}{n!} \\
& \text { \# bad } \left.: \frac{n!}{n!}-\frac{n!}{2!}+\frac{n!}{3!} \cdots \cdots\right)! \\
& \# \text { good: } \frac{n!}{0!}-\frac{n!}{1!}+\frac{n!}{2!}-\frac{n!}{3!}+\cdots \cdots+(-1)^{n} \frac{n!}{n!} \\
& \\
& =n!\left[\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right] \quad\left(e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}\right) \\
& n \text { large } \Rightarrow \approx n!e^{-1}=\frac{n!}{e}
\end{aligned}
$$

\# derangement:

$$
\begin{gathered}
\text { \#derangements }=\ln =\left\lfloor\frac{n!+1}{e}\right\rfloor n \geqslant 1 \\
10=1 \\
11=0 \\
12=1 \\
13=2 \\
14=9 \\
15=44
\end{gathered}
$$

Pigentole principle

- Choose SI numbers from $\{1,2, \ldots, 100\}$. Prove that two of them are consecutive.
- Place 10 points inside a 3×3 square. Prove that two of them mill be within a distance of $\sqrt{2}$
- Place numbers $1,2, \ldots, 10$ in 3 bins. Prove that sum in one bin is at least 19 .

Freedom in doing something, Guaranteed Consequence Pigeon hole?

Pigeon hole: Given $n+1$ objects and n boxes, if we place all objects in boxes, at least one box mill contain at least 2 objects.
[Basic form]
proof: (By contradiction)
Each boxes has at most one objects
Let x_{i} be \# objects in box i, then $x_{i} \leqslant 1$
Total number of objects $=\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}$

$$
\leqslant 1+1+\cdots+1=n
$$

a contradiction, since we have $n+1$ objects.

Prove two points will be within a distance $\sqrt{2}$
$\begin{array}{cc}10 \text { objects } \\ 9 \text { bores }\end{array} \left\lvert\, \Rightarrow \begin{gathered}\text { Pigeonhole: } 2 \text { objects will be } \\ \text { in the same box }\end{gathered}\right.$
\downarrow
2 points are in the same $|x|$ square
D longest distance inside square By Pythagoras, it's $\sqrt{2}$

Choose 51 numbers in $\{1,2, \ldots, 100\}$
Prove 2 of them will be consecutive Avoid "melanistic" arguments

Pigen hole argument: can't do it: only 50

$$
1,2
$$

To choose a number, place a token in its box 51 tokens 50 boxes, done! One box must contain at least 2 tokens \Rightarrow we have 2 consecutive numbers.

A bit more general
Pigeonhole: If we have n boxes, and m objects and we place all objects in boxes, then at least one box will have at least

$$
\left\lfloor\frac{m-1}{n}\right\rfloor+1 \text { objects. }
$$

proof: similar to previous proof (by contradiction)
If $n, m \in \mathbb{N},\left\lfloor\frac{m-1}{n}\right\rfloor+1=\left\lceil\frac{m}{n}\right\rceil$
"some box must contain at least the average"

Place numbers $1,2, \ldots, 10$ in 3 bins.

- Prove at least one bin has 4 numbers.

$$
m=10, n=3
$$

Pigeonhole: $\quad\left\lceil\frac{m}{n}\right\rceil=\left\lceil\frac{10}{3}\right\rceil=4$

- Prove at least one bin will have a sum of at least 19.

$$
\begin{aligned}
m & =1+2+3+\cdots+10=55 \\
n & =3 \\
\text { Pigeonhole } & =\left\lceil\frac{m}{n}\right\rceil=\left\lceil\frac{55}{3}\right\rceil=19
\end{aligned}
$$

