Today: How recurrences help with counting

- Instead of counting the exact thing Find a recurrence for it
- At the price of having to solve recurrence
 - Asymptotically (not exact)
-Find $a_{0}, a_{1}, a_{2}, a_{3} \ldots$. Put recurrence in a form
- Guess a pattern of a_{n} you know
- Generating functions
- Prove it by induction
$e e_{1} a_{n}=A a_{n-1}+B a_{n-2}$
- Solve using characteristic
equation

Example 1: How many regions n lines make in the plane if no two are parallel and no three intersect in one point

let $R_{n}=$ \# regions made dy n lines (Name It !!)

$$
R_{0}=1, \quad R_{1}=2, \quad R_{2}=4, \quad R_{3}=7, \quad R_{4}=11
$$

 $n^{\text {th }}$ line
The $n^{\text {th }}$ line adds n new regions

$$
R_{n}=R_{n-1}+n
$$

$$
\begin{array}{ccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \\
\hline 1 & 2 & 4 & 7 & 11 & 16 & 22 & \ldots
\end{array}
$$

Example: $\quad 11=4+\underbrace{7}$

$$
\begin{aligned}
& R_{n}=(1+2+\cdots+n)+1 \quad \begin{array}{c}
\text { 4 } \\
R_{n}=\frac{n(n+1)}{2}+1
\end{array} \quad 1+1
\end{aligned}
$$

Prove it by induction.
Base case: $R_{0}=\frac{0(0+1)}{2}+1=1$
Inductive Step: $\quad \forall k \geqslant 1, P(k) \Rightarrow P(k+1)$

$$
R_{k+1}=\frac{R_{k}}{L^{i n d . ~ h y p o . ~}}+(k+1)=\frac{k(k+1)}{2}+1+k+1=\cdots=\frac{(k+1)(k+2)}{2}+1
$$

Example 2. Tiling a $2 \times n$ rectangle by dominus.

In how many ways can we bile a $2 x n$ rectangle with dominus $n=4:$

[0] \square
\square
Let a_{n} be \# ways we can tile a rectangle of length $n \quad\left(a_{4}=5\right)$

$$
a_{n}=a_{n-1}+a_{n-2}
$$

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=1 \\
& a_{2}=2 \\
& a_{3}=3 \\
& a_{4}=5 \\
& \vdots F_{0}=0 \\
& F_{1}=1 \\
& F_{2}=1 \\
& F_{3}=2 \\
& F_{4}=3 \\
& F_{5}=5
\end{aligned}
$$

Example 3: Tower of Hanoi

Move n disks from peg 1 to peg 3

- move one disk at a time
- no disk can sit on top of a smaller one How many moves are needed to transfer a pile of n disks?
Let $a_{n}=\#$ mores to frausfer n disks.
In order to move the largest disk, we must reach this:

I must have moved $n-1$ disks with a_{n-1} moves
Then make 1 move

Then I need another a_{n-1} moves

$$
\begin{aligned}
& a_{n}=a_{n-1}+1+a_{n-1} \\
& a_{n}=2 a_{n-1}+1
\end{aligned}
$$

We solved this recurrence by eliminating 1 and putting it in the form $a_{n}=A a_{n-1}+B a_{n-2}$

- Another way: Establish a pattern

$$
\begin{gathered}
a_{0}=0 \quad a_{1}=1 \quad a_{2}=3 \quad a_{3}=7 \quad a_{4}=15 \quad a_{5}=31 \\
a_{n}=2^{n}-1
\end{gathered}
$$

Generating Functions
The generating function of the sequence

$$
a_{0}, a_{1}, a_{2}, a_{3}, \ldots
$$

is

$$
\begin{aligned}
f(x) & =a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots \\
& =\sum_{i=0}^{\infty} a_{i} x^{i}
\end{aligned}
$$

Example: Generating function for Fibonacci

$$
f(x)=0 \cdot x^{0}+1 \cdot x^{1}+1 \cdot x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+8 x^{6}+\cdots
$$

The $n^{\text {th }}$ derivative of $f(x)$ at $x=0$ divided by $n!$ is a_{n} $a_{n}=\frac{f^{(n)}(0)}{n!}$ (for any sequence)

$$
\begin{aligned}
& f(x)=a_{0} x^{0}+a_{1} x^{\prime}+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& f(0)=a_{0} \Rightarrow \frac{f(0)}{0!}=a_{0} \\
& f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots \\
& f^{\prime}(0)=a_{1} \Rightarrow \frac{f^{\prime}(0)}{1!}=a_{1} \\
& f^{\prime \prime}(x)=2 a_{2}+6 a_{3} x+\ldots \\
& f^{\prime \prime}(0)=2 a_{2} \Rightarrow \frac{f^{\prime \prime}(0)}{2!}=a_{2} \\
& f^{\prime \prime}(x)=6 a_{3}+\cdots \\
& f^{\prime \prime \prime}(0)=6 a_{3} \Rightarrow \frac{f^{\prime \prime \prime}(0)}{3!}=a_{3}
\end{aligned}
$$

So $f(x)=\sum_{i=0}^{\infty} \underbrace{\frac{f^{(i)}(0)}{i!}}_{a_{i}} x^{i} \quad$ (Maclaurin series)

