Generating Functions
The generating function of the sequence

$$
a_{0}, a_{1}, a_{2}, a_{3}, \ldots
$$

is

$$
\begin{aligned}
f(x) & =a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots \\
& =\sum_{i=0}^{\infty} a_{i} x^{i}
\end{aligned}
$$

Example: Generating function for Fibonacci

$$
f(x)=0 \cdot x^{0}+1 \cdot x^{1}+1 \cdot x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+8 x^{6}+\cdots
$$

The $n^{\text {th }}$ derivative of $f(x)$ at $x=0$ divided by $n!$ is a_{n} $a_{n}=\frac{f^{(n)}(0)}{n!}$ (for any sequence)

$$
\begin{aligned}
& f(x)=a_{0} x^{0}+a_{1} x^{\prime}+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& f(0)=a_{0} \Rightarrow \frac{f(0)}{0!}=a_{0} \\
& f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots \\
& f^{\prime}(0)=a_{1} \Rightarrow \frac{f^{\prime}(0)}{1!}=a_{1} \\
& f^{\prime \prime}(x)=2 a_{2}+6 a_{3} x+\ldots \\
& f^{\prime \prime}(0)=2 a_{2} \Rightarrow \frac{f^{\prime \prime}(0)}{2!}=a_{2} \\
& f^{\prime \prime}(x)=6 a_{3}+\cdots \\
& f^{\prime \prime \prime}(0)=6 a_{3} \Rightarrow \frac{f^{\prime \prime \prime}(0)}{3!}=a_{3}
\end{aligned}
$$

So $f(x)=\sum_{i=0}^{\infty} \underbrace{\frac{f^{(i)}(0)}{i!}}_{a_{i}} x^{i} \quad$ (Maclaurin series)

Example:

$$
\begin{aligned}
& \text { e: } \quad a_{n}=3 \times 2^{n-1}-a_{n-1}, a_{1}=0 \\
& a_{1}=0, \quad a_{2}=3 \times 2^{2-1}-a_{1}=6, \ldots
\end{aligned}
$$

Solution: $a_{n}=2^{n}+2(-1)^{n}$. [look for it $]$
Generating function:

$$
\begin{aligned}
f(x)= & a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
= & a_{1} x^{1}+\left(3 \times 2-a_{1}\right) x^{2}+\left(3 \times 2^{2}-a_{2}\right) x^{3}+\left(3 \times 2^{3}-a_{3}\right) x^{4}+\cdots \\
= & a_{1} x+6 x^{2}\left(1+2 x+4 x^{2}+\cdots\right)-\left(a_{1} x^{2}+a_{2} x^{3}+a_{3} x^{4}+\cdots\right) \\
f(x)= & 6 x^{2} \cdot \frac{1}{1-2 x}-x f(x) \quad\left\{\begin{array}{c}
1+a+a^{2}+a^{3}+\cdots=\frac{1}{1-a} \\
\text { if }|a|<1
\end{array}\right\} \\
& f(x)=\frac{6 x^{2}}{(1+x)(1-2 x)} \quad
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=2 x^{2}\left[\frac{1}{1+x}+\frac{2}{1-2 x}\right] \\
& f(x)=2 x^{2}\left[1-x+x^{2}-x^{3}+\cdots\right]+4 x^{2}\left[1+2 x+4 x^{2}+.\right]
\end{aligned}
$$

Coefficient of x^{n} is $\underbrace{4.2^{n-2}+2(-1)^{n}}_{a_{n}}$

$$
a_{n}=2^{n}+2(-1)^{n}
$$

Sorting an array

Repeatedly find the smallest element, move it to the beginning of array.
$(n-1)$ comparisons.

$$
\begin{gathered}
\text { total: }(n-1)+(n-2)+(n-3)+\cdots+1=\frac{n(n-1)}{2} \approx \frac{n^{2}}{2} \\
T_{n}=(n-1)+T_{n-1}, \quad T_{1}=0
\end{gathered}
$$

A better idea

Merge Sort : Divide array into two "equal" size arrays

A	B

(Merging ...)

$$
T_{n}=(n-1)+T_{[n / 2]}+T_{[n / 2]}
$$

move smaller of the two ($n-1$) comparisons.
Approximation: $T_{n}=n+2 T_{n / 2} \quad$ [each comparison move an elem] (Assume n is a power of 2) $\quad T_{1}=0$
$\begin{array}{lllll}T_{1} & T_{2} & T_{4} & T_{8} & T_{16}\end{array}$
$\begin{array}{lllll}a_{0} & a_{1} & a_{2} & a_{3} & a_{4}\end{array}$
$a_{n}=T_{2^{n}}$

$$
\begin{array}{r}
a_{n}=T_{2^{n}}=2^{n}+2 T_{2^{n} / 2}=2^{n}+2 T_{2^{n-1}} \\
a_{n}=2^{n}+2 a_{n-1} \quad a_{0}=0 \quad a_{1}=2
\end{array}
$$

We have seen this before solution: $a_{n}=n 2^{n}$

$$
a_{n}=T_{2^{n}} \Leftrightarrow T_{n}=a_{\log _{2} n}=\log _{2} n \cdot 2^{\log _{2} n}=n \log _{2} n .
$$

Number Theory
Divisibility: Definition \& Notation

1. a divides b
2. a is a divisor of b
3. b is a multiple of a
$\exists m \in \mathbb{Z}, b=m a \quad$ (definition)
4. $a \mid b$ (notation)

If a does not divide b ($a \nmid b$)
In general,
[unique representation] $b=a \cdot q+r \quad$ where $o \leqslant r<a$

$$
(r=0 \Rightarrow a \mid b)
$$

q: quotient
r : remainder, $r \in\{0,1,2, \ldots, a-1\}$
Prove uniqueness: (By contradiction)
Suppose $b=a q_{1}+r_{1}=a q_{2}+r_{2} \quad\left(r_{2}>r_{1}\right)$
what can we say about $r_{2}-r_{1}$?

$$
0<r_{2}-r_{1}<a
$$

$$
\begin{aligned}
r_{2} & =b-a q_{2} \\
r_{1} & =b-a q_{1} \\
r_{2}-r_{1} & =\left(b-a q_{2}\right)-\left(b-a q_{1}\right) \\
& =a\left(q_{1}-q_{2}\right)
\end{aligned}
$$

Now, $\quad 0<a\left(q_{1}-q_{2}\right)<a$

$$
0<q_{1}-q_{2}<1 \text {, a contradiction. }
$$

because these is no integer strictly between 0 and 1.

Given two integers a and b, the greatest Common divisor of a and b

$$
\operatorname{gcd}(a, b)
$$

is a divisor of a and a divisor of b and it's the largest such integer.

Well defined Concept:

- 1 is a common divisor, so there is one
- Common divisor $\leqslant \min (a, b)$, so there must be a largest.

