Consider the following program in pseudocode where $x=\{\ldots\}$ assigns x a value from the set, and $(x, y)=(\ldots, \ldots)$ simultaneously assigns x and y their values:

```
(x,y,z)=({1,\ldots,n},{1,\ldots,n},{1,\ldots,n})
while x>0 and y>0 and z>0
    control={1,2,3}
    if control==1 then
        (x,y,z)=(x+1,y-1,z-1)
    else
    if control==2 then
        (x,y,z)=(x-1,y+1,z-1)
    else
        (z,y,z)=(x-1,y-1,z+1)
```

$x+y+z$ decreases
by 1 each iteration.

It is typical to prove that a program terminates by finding a quantity that is always decreasing. In the above program, obviously $x+y+z$ decreases by 1 after every iteration. Therefore, one of x, y, or z will eventually reach zero and the program will terminate. However, it is not always possible to find a decreasing quantity, like in the following program:

$$
\begin{aligned}
& (x, y, z)=(\{1, \ldots, n\},\{1, \ldots, n\},\{1, \ldots, n\}) \\
& \text { while } x>0 \text { and } y>0 \text { and } z>0 \\
& \text { control=\{1,2\} } \\
& \text { if control==1 then In each iteration } \\
& x=\{x, \ldots, n\} \quad \text { either } z \text { decreases, } \\
& \begin{array}{l}
y=\{y, \ldots, n\} \quad \text { or } z \text { repairs the samuel } \\
z=z-1
\end{array} \\
& \text { else } \\
& y=\{y, \ldots, n\} \quad \text { Look at }(z, x) \\
& \mathrm{x}=\mathrm{x}-1
\end{aligned}
$$

let z_{i}, x_{i} be values of z and x in iteration i

$$
\left(z_{i}, x_{i}\right) \prec\left(z_{j}, x_{j}\right) \Leftrightarrow z_{i}<z_{j} \vee\left(z_{i}=z_{j} \wedge x_{i}<x_{j}\right)
$$

Iteration i v.s Iteration $(i+1)$

$$
\left(z_{i+1}, x_{i+1}\right) \prec\left(z_{i}, x_{i}\right)
$$

because either $z_{i+1}<z_{i}$ or

$$
z_{i+1}=z_{i} \wedge x_{i+1}<x_{i}
$$

Finite set of possible tuples, every partial order relation on a finite set has a "minimum", we can't decrease (z, x) indefinitely. Program musist stop.

Fermat Theorem
p prime $\wedge p \nmid a \Longrightarrow a^{p-1} \equiv 1(\bmod p)$

- $p \times a \Rightarrow \operatorname{gcd}(a, p)=1$
- Consider set $\{1,2,3, \ldots, p-1\}$
[idea: $\left.g^{(a(a)}(a)=1\right]$ $(\bmod p) \unlhd$ permute (because $\operatorname{god}(a, \beta)=1)$

$$
a \cdot(2 a) \cdot(3 a) \cdot(4 a) \cdots \cdot[(p-1) a] \equiv 1 \cdot 2 \cdot 3 \cdots(p-1)=(p-1)!
$$ $a^{p-1} \cdot(p-1)!\equiv(p-1)!(\operatorname{mad} p)$

Strengthen:

$$
p \text { prime } \Longleftrightarrow \forall a<p, a^{p-1} \equiv 1(\bmod p)
$$

Idea: To check if a number n is prime, make sure $a^{n-1} \equiv 1(\bmod n)$ for all $a<n$.
Not better than checking $\{1, \ldots, \rho-1\}$ for divisors!
But it turns out, it has good random behavior:
repeat 100 times

- pick random $a<n$
-if $a^{n-1} \neq 1(\bmod n)$
return false (n is composite)
reform true.
Problem: n might be composite and we still return tire because we did not pick the "good" $a: a^{n-1} \neq \mid \bmod n$

For most composites, the probability of picking a "bad" a is $\leq \frac{1}{2}$. Therefore, the prob. of making wrong decision $\leqslant\left(\frac{1}{2}\right)^{100}$

n is composite
there moot be an $a^{n-1} \neq 1(\bmod n)$
Assume also $\operatorname{gad}(a, n)=1$

This is true for almost all composites

$$
\begin{aligned}
& x^{n-1} \equiv 1(\bmod n) \\
& (a x)^{n-1} \equiv a^{n-1} x^{n-1} \equiv a^{n-1} \cdot 1 \equiv a^{n-1} \neq 1(\bmod n)
\end{aligned}
$$

If x is "bad" then ax mod n is "good". For every "bad" there is at least one "good".

Probleans
$-a^{n-1}$ requires $(n-1)$ multiplication

- a^{n-1} is HUGE!

Repeated squaring:

$$
a^{b}=\left\{\begin{array}{ll}
1 & b=0 \\
a \cdot a^{b-1} & b \text { odd } \\
{\left[a^{b / 2}\right]^{2}} & b \text { even }
\end{array} \quad\right. \text { [save ult.] }
$$

Combine this with compacting everything modulon on the fly.

Example: $a=2, n=30$
Need to find $a^{n-1}=2^{29}$

Cryptography
Assume every message is a_{n} integer $x<n$.
To send x to person A, send $x^{e} \bmod n$ where e and n are advertized by A
private public key
Key
(see next slide)
Fact 1: It's hard to factor n into primes, so it's hard to discover p and q
Fact 2: Given $y=x^{e} \bmod n$, it's hard to figure out x.

Person A also has: $\operatorname{ged}(e,(p-1)(q-1))=1$
so there exists d such that

$$
e d \equiv 1(\bmod (p-1)(q-1))
$$

d can be easily found by A (how?) but not by others.
cain: $y^{\alpha} \bmod n=x$

$$
\begin{aligned}
y^{d} \equiv\left(x^{e}\right)^{d} & \equiv x^{e d} \equiv x^{(p-1)(q-1)+1} \equiv x \cdot\left(x^{q-1}\right)^{p-1} \\
\cdot p \mid x & \Rightarrow y^{d} \equiv x \equiv 0(\bmod p) \\
\cdot p \nmid x & \Rightarrow p \nmid x^{q-1} \Rightarrow\left(x^{q-1}\right)^{p-1} \equiv 1(\text { mod } p) \text { [Fermat] } \\
& \Rightarrow y^{d} \equiv x(\bmod p)
\end{aligned}
$$

$$
\begin{aligned}
& y^{d} \equiv x(\bmod p) \Rightarrow p \mid y^{d}-x \\
& y^{d} \equiv x(\bmod q) \Rightarrow \frac{q \mid y^{d}-x}{p q \mid y^{d}-x}(p, q \text { primes })
\end{aligned}
$$

Therefore $\quad y^{d} \equiv x(\bmod p q)$

$$
y^{d} \equiv x(\bmod n)
$$

