Which graphs are not planar?
First, define degree of a face to be the number of edges on a closed walk of its boundary

$$
\begin{gathered}
5+4+9=18 \\
e=9 \\
\sum_{f} d f=2 e
\end{gathered}
$$

$k_{3,3}$ is not planar

every face has at least 4 edges

$$
\begin{gathered}
4 f \leqslant 2 e \\
v=6, e=9 \Rightarrow f=5 \text {, but } 4 \times 5>2 \times 9
\end{gathered}
$$

K_{5} is not planar

every face has at least 3 edges

$$
v=5, e=10 \Rightarrow f=7 \text {, but } 3 \times 7>2 \times 10
$$

Every non-planar graph has $K_{3,3}$ or K_{5} as a "basic shape"

Another interesting result:
Every planar graph with $v>2$ satisfies

$$
e \leq 3 v-6
$$

proof: Since every face has degree at least 3 (b eave $v>2$) we have $3 f \leqslant 2 e$
but $e=v+f-2 \leqslant v+\frac{2 e}{3}-2 \Rightarrow e \leqslant 3 v-6$
Average degree

$$
\sum_{v \in V} d v=2 e \leqslant 6 v-12
$$

$\frac{\sum d v}{v} \leqslant 6-\frac{12}{v}<6$ (There must be a vertex v such that $d v \leqslant 5)$

Number of Trees
Given n vertices, how many trees can we make? It depends! Are these the Same ?

Labeled trees: Two trees are the same if they have the same set of edges

Unlabeled trees: Two trees are the same if there exists a bijection between their vertices that preserves the edges.

$$
\begin{aligned}
& f(1)=5 \quad f(2)=3 \quad f(3)=4 \quad f(4)=1 \quad f(5)=2 \\
& (u, v) \in E \Longleftrightarrow(f(u), f(v)) \in E^{\prime}
\end{aligned}
$$

Cayley's Formula:
Number of labeled trees on n vertices is n^{n-2} Chapter 8 contains 3 proofs

1) Prufer code
2) Inclusion -Exclusion
3) A counting argument

Finding the best tree: The min. spanning tree Given a connected weighted graph: a graph wist a weight function of the edges

$$
w: E \rightarrow \mathbb{R}
$$

Find a tree (connected acyclic) that has the smallest total weight.

Example:

Brute force:
Trussing all possible trees is bad: There are many!
An algorithm that works: Greedy algorithm.
Pick the smallest weight edge and add it to the tree as long as it makes no cycle (so sort the edges by weight and go through them one at a time)

Remember: sorting is $|E| \log |E|$ time. checking for cycles can be done efficiently. Proof that alg. produces best tree: $\csc 1335 /$ chapter 8

Running the greedy alg. together in class...

weight of tree: $1+2+2+4+4+7+8+9=\ldots$

Greedy does not always work!
Example: Traveling salesman: Find a cycle that visits every vertex exactly once at min. cost.

Greedy : Pick the smallest weight edge and add it to cycle as long as degree of every vertex $\leqslant 2$ and cycle does not close early (missing some)

Running the alg. together in class...

optimal cycle has weight $1+3+5+4=13$ cycle found by greedy alg. has weight $1+2+5+1000$

Hamiltonian Cycle: A cycle that visits every vertex exactly once.

Hard to find!
Euler cycle: A cycle that visits every edge exactly once. Easy
(Inspired by Bridges of Konigsberg, now Kaliningrad, Russia) Euler 1735

Can we cross all 7 bridges and return to where we start?

Euler's multigraph:
Graph with multiple edges between vertices Each bridge is a edge Find an Euler cycle.

All vertices have even degree

Easy to find one:
Repeat

- Pick some arbitrary vertex
- Follow new edges arbitrarily until you can't (Found a cycle)
- Join with prev. cycle Until done.

Example:

