What's in Discrete Math that we did not cover

- More on recurrences, Katalan numbers, stirling numbers integer partitions (chap. 6)
- Asymptotic solutions of recurrences, Master theorem
- Probability: Ranbum variable, expectations, generating functions.
- Group theory / permutations
- Graph coloring (chap. 8)
- Block design / designs (coding theory)
- More about algorithms.
- Graphs: vertecies, edges, paths, cycles,...
- Trees, properties of trees.
- Planar graphs.

Formulas associated with graphs.

- Handshake Lam a
- $V-e+f=2$ (planar conneded graph)
- Planar graph: Sum of degrees of faces $=2 x e$
- Tree: $e=V-1$
- Number theory: ged, Eudidean Ag g 1 modular arith. inverses modulo p, solving linear equations mod p
congruence relation (equivalence relation)
- Equivalence Relation (Refl., symm, Trans.)
- Pontial order Relation (anti-symumetric, transitive)
- Recurrences: especially $a_{n}=A a_{n-1}+B a_{n-2}$ (characteristic equation)
drop: generating functions
- Induction
- Counting
- Proofs: Induction, direct proofs, proof by contradiction, contrapositive, existential proofs, pigconlide
- Inclusion - Exclusion : (counting)
- Product rale, addition rale, binomial coefficients

$$
\binom{n}{k}=\# \text { subsets of sire } k \text { if } S=\{1,2, \ldots, n\}
$$

Sum and product notations \sum, Π
Binomial Theorem $\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}=(a+b)^{n}$
\#sol: $x_{1}+x_{2}+\cdots+x_{n}=k$ is $\binom{n+k-1}{n-1}$ c

- Functions: onto, one-to-one, bijection
drop: Cardinality of infinite sets, countable vs. Uncomballe Establishing bijection to prove two sets have the same size, diagondization.

