Sum \& Product notations
upper
bound $\sum_{i=a}^{b} f(i)=f(a)+f(a+1)+\cdots+f(b)$
lower bound

$$
\prod_{i=a}^{b} f(i)=f(a) \times f(a+1) \times \ldots \times f(b)
$$

Examples:

$$
\begin{aligned}
& \frac{5:}{1+2+3+\cdots+n}=\sum_{i=1}^{n} i \\
& 1 \times 2 \times 3 \times \cdots \times n=\prod_{i=1}^{n} i
\end{aligned}
$$

Programs to compute Σ and π

Sum
$s \leftarrow \quad 0$
for $i \leftarrow a$ to b

$$
s \leftarrow s+f(i)
$$

return s
prod

$$
p \leftarrow .1
$$

for $i \leftarrow a$ to b

$$
p \leftarrow p \times f(i)
$$

return p

* possible snakes: $1+2+3+\cdots+(n-1)=\frac{(n-1) n}{2}=\binom{n}{2}$
why I am adding?

$$
S_{n}
$$

Set of snakes with head on square n

S_{2}
set of snakes with head on square 2

Notation: $|S|=$ size of set S
size: $\quad\left|s_{n}\right|=n-1 \quad\left|s_{n-1}\right|=n-2$

$$
\left|s_{2}\right|=1
$$

The total \#snakes $=\left|s_{n}\right|+\left|s_{n-1}\right|+\cdots+\left|s_{2}\right|=\sum_{i=2}^{n}\left|s_{i}\right|$
Note: $\left|s_{n}\right|+\left|s_{n-1}\right|+\cdots+\left|s_{2}\right|+\underbrace{\left|s_{1}\right|}_{0}=\sum_{i=1}^{n}\left|s_{i}\right|$

Idea above is not always true. It's true when sets are disjoint

Addition rule: If $S_{1}, S_{2}, \ldots, S_{k}$ are disjoint then the total \#elemments in their Union is $\quad\left|s_{1}\right|+\left|s_{2}\right|+\cdots+\left|s_{k}\right|=\sum_{i=1}^{k}\left|s_{i}\right|$

Example: I have 10 red candies \& 5 blue candies
so I have $10+5$ candies in total

I have 10 red candies and 5 square candies, then I don't necessarily have 15 candies

Program that counts all snakes based on the idea of the sum

$$
s \leftarrow 0
$$

for $i \leftarrow 1$ to $n \quad$ (head)

$$
\text { adds }(i-1) \text { to } s \longleftarrow\left\{\begin{aligned}
\text { for } j \leftarrow 1 \text { to }(i-1) & \text { (tail) } \\
\text { do } s \leftarrow s+1 & \text { (another snakes) }
\end{aligned}\right.
$$

return s
Math:

$$
\begin{aligned}
& \sum_{i=1}^{n} \underbrace{\left(\sum_{j=1}^{\sum_{j=1}^{n-1} 1}\right)} \\
&\left.\sum_{i-1}^{1+1+1 \cdots 1}\right)=\sum_{i=1}^{n}(i-1) \\
&=0+1+2+\cdots+(n-1) \\
&=n(n-1) / 2
\end{aligned}
$$

$$
\begin{aligned}
\sum_{i=1}^{n}(i-1)= & \underbrace{\sum_{i=1}^{n} i}-\sum_{i=1}^{n} 1 \\
& \underbrace{\frac{n(n+1)}{2}}_{1+2+3+\cdots+1)}-n=\frac{n(n+1)-2 n}{2}=\frac{n(n-1)}{2}
\end{aligned}
$$

Remember: $\quad n!=1 \times 2 \times 3 \times \ldots \times n$ (\# permutation)

$$
\begin{aligned}
\sum_{i=1}^{n} i=1+2+3+\cdots+n & =\frac{n(n+1)}{2} \\
1+2+3+\cdots+\square & =\frac{\square(\square+1)}{2}
\end{aligned}
$$

Another way of counting snakes
To count something think about a procedure to generate one possibility.

Example: | 4 | 3 |
| :--- | :--- |
| 1 | 2 |$\quad n=4$

choose a square:
chore another square:

$$
4 \times 3=12
$$

overcount by 2 .

Product rule: If a task can be done in k phases, and phase i can be carried out in α_{i} ways, then the total task can be carried out in $\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{k}=\prod_{i=1}^{k} \alpha_{i}$ ways.
independently from previous phases

$$
n=64
$$

- head \& tail must have same color head > tail How many snakes?

1. choose a square 64
2. choose a square of the same color
overcount is by 2 .
\# snakes: $\frac{64 \times 31}{2} \quad \frac{n}{2}\left(\frac{n}{2}-1\right)$
(assuming n even)

In how many ways can I place 2 snakes? Snake $1\left[\begin{array}{lll}1 . \text { choose a square } & \text { \#ways } \\ 2 . & n \\ 2 . & \text { choose another square } \ldots . . . & n-1\end{array}\right.$ Snake $2\left[\begin{array}{lllll}3 . & \text { choose another square } \ldots \ldots & n-2 \\ 4 . \text { choose } \ldots & \ldots & n-\ldots & n-3\end{array}\right.$ $n(n-1)(n-2)(n-3)$

What's the over count? (see below)

* ways I can place 2 snakes

$$
n(n-1)(n-2)(n-3) / 8
$$

