Generalizing permutations and combinations
(1). There are $n!$ ways of permuting n objects what if we want to permute some number $k \leqslant n$ of them? (k-permutation)
(2). There are $\binom{n}{2}=\frac{n(n-1)}{2}$ ways of choosing pairs (unordered) out of n objects, what about

$$
\binom{n}{k} ? \quad(k \leq n)
$$

To answer (1), it would help to understand where n! comes from.

Let's generate a permutation:
\# ways

1. Choose the first

$$
\begin{gathered}
n=n-(1-1) \\
(n-1)=n-(2-1)
\end{gathered}
$$

2. choose the second
3. " the third … $(n-2)=n-(3-1)$
\vdots
$\begin{array}{lll}k .11 & k^{\text {th }} \ldots . . & (n-k+1) \\ \vdots & n-(k-1)\rfloor\end{array}$
n. choose the $n^{\text {th }} \ldots$

$$
\frac{1}{n(n-1)(n-2) \ldots 1}=n!
$$

Give above procedure with k phases, product rule gives the \# of K-permutations

$$
\begin{aligned}
n P_{k}=P_{k}^{n} & =n(n-1)(n-2) \cdots(n-k+1) \\
& =\prod_{i=0}^{k-1}(n-i)=\prod_{i=1}^{k}(n-i+1) \\
= & \frac{n(n-1)(n-2) \cdots(n-k+1)(n-k)(n-k-1) \cdots 1}{(n-k)(n-k-1) \cdots 1}=\frac{n!}{(n-k)!}
\end{aligned}
$$

Example:(1)

$\underbrace{h h \ldots h}_{n}$ chairs

- In how many ways con I seat a people on n chairs? That's a permutation, so n !
- what if we have k chairs $(k \leqslant n)$ (not everyone gets to sit)

$$
\text { \#k-permutation }=\frac{n!}{(n-k)!}
$$

Erample(2): We have n movies and k nights ($k \leqslant n$). In how manyways can we decide on what to watch?

Again, that's $\frac{n!}{(n-k)!}$
\rightarrow To obtain $\binom{n}{k}$ " n choose k " we have to drop order from k-permutations.
\rightarrow The k-permutation, over count !
\rightarrow By how much? By k !
Example: $\quad A, B, C, D$
How many 3 -permutations are there?

$$
\left\{\begin{array}{llll}
A B C & A B D & A C D & B C D \\
A C B & A D B & \vdots & \vdots \\
B A C & B A D & \vdots & \\
B C A & B D A & & \\
C A B & D A B & & \\
C B A & D B A & &
\end{array}\right.
$$

$$
\begin{aligned}
\binom{n}{k} & =\frac{n!}{k!(n-k)!} \\
\cdot\binom{n}{2} & =\frac{n!}{2!(n-2)!}=\frac{n!}{2(n-2)!}=\frac{n \times(n-1) \times(n-2)!}{2(n-2)!} \\
& =\frac{n(n-1)}{2} \\
\cdot\binom{n}{1} & =\frac{n!}{1!(n-1)!}=\frac{n!}{(n-1)!}=\frac{n \times(n-1)!}{(n-1)!}=n \\
\cdot\binom{n}{0} & =\frac{n!}{0!(n-0)!}=\frac{n!}{1 \cdot n!}=1 .
\end{aligned}
$$

What is $\binom{n}{k}$ really?
It's the number of size- k subsets.
Example: $S=\{a, b, c\} \quad|S|=3$
size 0 subsets: $\}=\phi$
$\binom{3}{0}=1$
Size 1 subsets: $\{a\},\{b\},\{c\}$
$\binom{3}{1}=3$
size 2 subsets: $\{a, b\},\{a, c\},\{b, c\}$
$\binom{3}{2}=3$
Size 3 subsets: $\{a, b, c\}$
$\binom{3}{3}=1$
\# subsets $=1+3+3+1=8$ (Addition rule)

$$
S=\{1,2,3, \ldots, n\} \quad|S|=n
$$

\# subsets (addition rule)

$$
\begin{aligned}
& \binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n} \underbrace{=2^{n}}_{\text {later }} \\
& \text {-ple: } n=4
\end{aligned}
$$

$$
\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}=1+4+6+4+1=16
$$

Number of subsets is 2^{n}
Example: $S=\{a, b, c\}$

1. choose if a in subset $\frac{\# \text { wave }}{2}$
2. choose if b in subset \vdots
\qquad 2
\qquad

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Allow repetition in my choice
Example: Make words of length 2 using letters $a b c$ aa ba ca
$a b \quad b b c b$
$a c \quad b c c c$

1. choose a letter
$\ldots \frac{\text { \#ways }}{3}$
2. choose a letter $\frac{3}{9}$

In how many ways can we choose k out of n with order \& repetition? n^{k}

	order	no order
no repetition	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$
repetition	n^{k}	$?$

