Logic \& Proofs

- Recall how we "prove" that a function is one-to-one:
proof: $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \cdots \Rightarrow x_{1}=x_{2}$
- What is the "logic" behind such proof, especially this was NOT how we defined one-to-one!
勿do $\overline{3}$: How did we define one-to-one?
compare to:

$$
A \Rightarrow B \quad \text { not } B \Rightarrow \operatorname{not} A
$$

A real life example
My principle in life:
"If it's raining, then I carry an umbrella"
$\underbrace{\text { Rain } \Rightarrow \text { Umbrella (rain implies umbrella) }}$ True statement

$\frac{\text { Rain }}{\text { True }}$	$\frac{\text { Umbrella }}{\text { ? True }}$		$\frac{\text { Umbrella }}{}$
Trim			
False	? X	True	?X
	False	? False	

So, not Umbrella \Rightarrow not Rain
To understand this better, we need to talk about propositions

Propositision
A proposition is a statement that is either true or false. A proof establishes the truth value of propositions.
Example Propositions
. For every non-negative integer $n, n^{2}+n+41$ is prime

$$
\forall n \in \mathbb{Z}_{\geqslant 0}, \frac{n^{2}+n+41 \text { is prime }}{\uparrow}
$$

Quantifier variable predicate
. There exists a positive integer that is not the product of primes

. For every number x, if $x \geqslant 2$ then $x^{2} \geqslant 4$

$$
\forall x \in \mathbb{R},\left(x \geqslant 2 \Rightarrow x^{2} \geqslant 4\right)
$$

- If $a \cdot b$ is irrational, then a is irrational or b is irrational

$$
a \cdot b \notin \mathbb{Q} \Rightarrow(a \notin \mathbb{Q} \vee b \notin Q)
$$

- Let P and Q be propositions. Then the following are propositions

$$
\begin{array}{ll}
P \Rightarrow Q & (P \text { implies } Q) \\
P \vee Q & (P \text { or } Q) \\
P \wedge Q & (P \text { and } Q) \\
\neg P & (\operatorname{not} P)
\end{array}
$$

$\forall x, P(x)$: True if $P(x)$ is true for all x
$\exists x, P(x)$: True if $P(x)$ is true for some x
$\forall n \in \mathbb{Z}_{\geqslant 0}, n^{2}+n+41$ is prime.
Let's see if above is true.

$$
\begin{array}{ll}
n=0 & \cdot 0^{2}+0+41=41 \checkmark \\
n=1 \cdot & 1^{2}+1+41=43 \checkmark \\
n=2 \cdot & 2^{2}+2+41=47 \checkmark \\
n=3 \cdot & 3^{2}+3+41=53 \\
\vdots & \\
n=39 \cdot & 39^{2}+39+41=1601 \checkmark \\
n=40 \cdot & 40^{2}+40+41=1681=41^{2}
\end{array}
$$

Lesson: No proof by example.

- You don't prove something is always true by giving examples unless you cover all examples
- But you can prove $\forall x, P(x)$ is false by a counter example.
- You can also prove $\exists x, P(x)$ is true by an example.

But how do $7, \wedge, v, \Rightarrow$ behave ?
we can define each by a Truth Table.
Truth table: For every possible truth values for P and Q, list the truth value of $7 P, P \wedge Q, P \vee Q, P \Rightarrow Q$

Why are the following true?

$$
0 \Rightarrow 0 \quad 0 \Rightarrow 1
$$

Consider: $\forall x \in \mathbb{R},\left(x>5 \Rightarrow x^{2}>16\right)$

$$
x>5 \Rightarrow x^{2}>16
$$

$x=4: \quad 0 \Rightarrow 0$
But the statement
$x=5: \quad 0 \Rightarrow 1$
is the for all x 首

Important observation

If $(P \Rightarrow Q)$ is twee, this does not say anything about the truth of P or that of Q

P	Q	$P \Rightarrow Q$
0	0	1
0	1	1
1	0	0
1	1	1

Both P and Q can be either True or False

Implication

Other ways of saying $P \Rightarrow Q$

$P Q$	$P \Rightarrow Q$	$7 P$	$7 Q$	$7 P \vee Q$	$7 Q \Rightarrow 7 P$	$P \wedge 7 Q$	
0	0	1	1	1	1	1	0
0	1	1	1	0	1	1	0
1	0	0	0	1	0	0	1
1	1	1	0	0	1	1	0
contrapositive							

Conclusion: $\quad(P \Rightarrow Q)=(7 P \vee Q)=(7 Q \Rightarrow 7 P)$

$$
\neg(P \Rightarrow Q)=P \wedge \neg Q
$$

