Properties of implication
(1) P is true and $(P \Rightarrow Q)$ is true, then Q is true

$P Q$	$P \Rightarrow Q$
00	1
01	1
10	0
11	1

(2) $(P \Rightarrow Q) \Leftrightarrow(7 Q \Rightarrow T P)$

To prove $(P \Rightarrow Q)$ is true, prove $(7 Q \Rightarrow 7 P)$ is true instead In general, to prove $(P \Rightarrow Q)$ is true,
prove that whenever P is true, Q is also true
Note: we often omit "is true" when we say " P implies Q ".
(3) (TP \Rightarrow False), then P is true

To prove P is true, prove that $7 P$ implies something false
(4) $(P \Rightarrow Q)$ is true and $(Q \Rightarrow R)$ is true, then $(P \Rightarrow R)$ is true Chain your implications

Let's Prove property (4)
By case analysis of P
P false: then $(P \Rightarrow R)$ is true regardless of R
P true: P is true and $(P \Rightarrow Q)$ is true, then Q is true. (property (1))

Now, Q is true and $(Q \Rightarrow R)$ is true, then R is true (property (1))
P is true and R is true, then $(P \Rightarrow R)$ is true

Prove that if $x \geqslant 3$, then $x^{2} \geqslant 9$

$$
\underbrace{x \geqslant 3}_{P} \Rightarrow \underbrace{x^{2} \geqslant 9}_{Q}
$$

Prove $(P \Rightarrow Q)$ is true

$$
x \geqslant 3 \Rightarrow x \cdot x \geqslant 3 \cdot 3 \Rightarrow x^{2} \geqslant 9
$$

algebra algebra
We proved that whenever $x \geqslant 3$ is true, $x^{2} \geqslant 9$ is true
We effectively proved: $\forall x \in \mathbb{R}, x \geqslant 3 \Rightarrow x^{2} \geqslant 9$
Question: Can we prove $\forall x, y \in \mathbb{R}, \frac{x}{y}>1 \Rightarrow x>y$? $\frac{x}{y}>1 \Longrightarrow x>y \quad$ (multiply by y on both sides) algebra?

Example 1: Prove $\underbrace{n \text { odd }}_{P} \Rightarrow \underbrace{n^{2} \text { is odd }}_{Q}$ (is true)
Definition:

$$
\begin{aligned}
& n \text { odd } \Leftrightarrow n=2 \cdot k+1, k \in \mathbb{Z} \\
& n \text { even } \Leftrightarrow n=2 \cdot k, k \in \mathbb{Z}
\end{aligned}
$$

$$
n \text { is odd } \underset{\text { def. }}{\Rightarrow} n=2 k+1, k \in \mathbb{Z}
$$

$$
\begin{aligned}
n=2 k+1 \underset{\text { algebra }}{\Rightarrow} n^{2}=(2 k+1)^{2} & =4 k^{2}+4 k+1 \\
& =2(\underbrace{2 k^{2}+2 k}_{k^{\prime} \in \mathbb{Z}})+1
\end{aligned}
$$

$n^{2}=2 k^{\prime}+1 \underset{\operatorname{def}}{\Rightarrow} n^{2}$ is odd.
We also proved: $\quad n^{2}$ is even $\Rightarrow n$ is even. (Why?)

Example 2: Prove $\underbrace{a b \notin \mathbb{Q}}_{A} \Rightarrow \underbrace{(a \notin \mathbb{Q} \vee b \notin \mathbb{Q}}_{B})$ consider the contrapositive:

$$
7 B \Rightarrow 7 A
$$

$$
a \in \mathbb{Q} \wedge b \in \mathbb{Q} \Rightarrow a b \in \mathbb{Q}
$$

- $a \in \mathbb{Q} \Rightarrow a=\frac{x}{y}, x \in \mathbb{Z}$ and $y \in \mathbb{N}$
- $b \in \mathbb{R} \Rightarrow b=\frac{z}{w}, z \in \mathbb{Z}$ and $w \in \mathbb{N}$
$a \in \mathbb{Q} \wedge b \in \mathbb{Q} \Rightarrow a=\frac{x}{y}$ and $b=\frac{z}{w}$

$$
\left\{\begin{array}{l}
\substack{P \Rightarrow Q \\
w \rightarrow R} P \wedge w \Rightarrow Q \wedge R \\
\text { see below }
\end{array}\right.
$$

$$
\begin{aligned}
a= & \frac{x}{y} \text { and } b=\frac{z}{w} \Rightarrow \\
& a b=\frac{x}{y} \cdot \frac{z}{w}=\frac{x \cdot z}{y \cdot w}, \quad x \cdot z \in \mathbb{Z}, y \cdot w \in \mathbb{N} \\
& a b \in \mathbb{Q}
\end{aligned}
$$

Remark: If $P \wedge W$ is true, then P is true and W is true Since $(P \Rightarrow Q)$ is tue, then Q is true. Similarly, since $(W \Rightarrow R)$ is true, then R is true. Therefore $Q_{\wedge} R$ is true. So $P_{\wedge} W \Rightarrow Q_{\wedge} R$

Example 3: Prove $\sqrt{2}$ is irrational.

$$
\begin{aligned}
P: \sqrt{2} \notin \mathbb{Q} \\
\tau P: \sqrt{2} \in \mathbb{Q}
\end{aligned}
$$

by contradiction
$\sqrt{2} \in \mathbb{Q} \Rightarrow \sqrt{2}=\frac{a}{b}$ ($a \& b$ are integers and $\frac{a}{b}$ is irreancille) $\Rightarrow 2=\frac{a^{2}}{b^{2}} \Rightarrow a^{2}=2 b^{2} \Rightarrow a^{2}$ is even $\Rightarrow a$ is even.

$$
\sqrt{2} \in Q \Rightarrow 2=\frac{a^{2}}{b^{2}} \Rightarrow b^{2}=\frac{a^{2}}{2}=\frac{2 k \times 2 k}{2}=\frac{4 k^{2}}{2}=2 k^{2}
$$

$\Rightarrow b^{2}$ is even $\Rightarrow b$ is even a is even and b is even $\Rightarrow \frac{a}{b}$ is reducible $\sqrt{2} \in Q \Rightarrow\left(\frac{a}{b}\right.$ is reducible and $\frac{a}{b}$ is irreducible $)$ False

