Properties of implication

P is true and (P⇒Q) is true, then Q is true
To prove Q Knowing P is true, prove (P⇒Q) is true Direct proof PQ P⇒Q 00 1 $(2)(P \Rightarrow Q) \iff (TQ \Rightarrow TP)$ 01 1 To prove (P=>Q) is true, prove (TQ=>TP) is true instead proof by contrapositive 10 0 11 1 In general, to prove (P=>R) is true, prove that whenever P is true, Q is also true Note: we often omit "is true" when we say "P implies Q". 3 (1P=> False), then I is iruc To prove P is true, prove that 7P implies something False (proof by contradiction) (3) ($1P \Rightarrow False$), then P is true (P⇒Q) is true and (Q⇒R) is true,
 then (P⇒R) is true
 Chain your implications transitivity

Let's prove property (4)

By case analysis of P

P false : then $(P \Rightarrow R)$ is true regardless of R

Ptrue: Pistrue and (P=>Q) is true,

then Q is true. (property ())

Now, Q is true and $(Q \Rightarrow R)$ is true, then R is true (property (1))

P is true and R is true, then

 $(P \Rightarrow R)$ is true

Prove that if $x \ge 3$, then $x^2 \ge 9$ $\chi_{3} \Rightarrow \chi^{2}_{3}$ P Q Prove (P⇒Q) <u>is true</u> $\chi \geqslant 3 \implies \chi \cdot \chi \geqslant 3 \cdot 3 \implies \chi^2 \geqslant 9$ algebra algebra We proved that whenever x_{23} is true, x_{2}^{2} , 9 is true We effectively proved : $\forall x \in \mathbb{R}, x \ge 3 \Rightarrow x^2 \ge 9$ Question: Can we prove $\forall x, y \in IR, \frac{\pi}{2} > 1 \Rightarrow x > y$? $\frac{\pi}{2} > 1 \Rightarrow x > y$ (multiply by y on both sides) algebra?

Example 1 : Prove $n \text{ odd} \Rightarrow n^2 \text{ is odd} \text{ (is true)}$ P Q Definition: Direct (proof $n \text{ odd} \Leftrightarrow n = 2 \cdot K + 1, k \in \mathbb{Z}$ n even ⇔n= 2.k, K E Z n is odd \Rightarrow n=2k+1, $k \in \mathbb{Z}$ def. $n = 2k + 1 \implies n^{2} = (2k + 1)^{2} = 4k^{2} + 4k + 1$ algebra $= 2(2k^{2} + 2k) + 1$ $n^2 = 2k' + 1 \implies n^2 \text{ is odd.} \qquad k' \in \mathbb{Z}$ We also proved: n^2 is even \Rightarrow n is even. (Why?)

 $ab \notin R \Longrightarrow (a \notin Q \lor b \notin Q)$ Example 2: Prove B consider the contrapositive: A 7B => 7A Contrapositive $a \in \mathbb{R} \land b \in \mathbb{R} \Rightarrow ab \in \mathbb{R}$ • $a \in CR \implies a = \frac{x}{y}$, $x \in \mathbb{Z}$ and $y \in \mathbb{N}$ • ber \Rightarrow $b = \frac{Z}{W}$, $z \in \mathbb{Z}$ and $w \in \mathbb{N}$ $a \in Q \land b \in Q \Rightarrow a = \frac{x}{y} and b = \frac{z}{w}$ P=>Q F PAW=>QAR (why?) see below

 $a = \frac{x}{y}$ and $b = \frac{z}{w} \Longrightarrow$

 $ab = \frac{\chi}{y} \cdot \frac{\chi}{w} = \frac{\chi \cdot \chi}{y \cdot w}$ $z.z \in \mathbb{Z}$, y.we N

 $\Rightarrow ab \in Q$

Remark: If PAW is true, then P is true and W is true Since $(P \Rightarrow Q)$ is true, then Q is true. Similarly, since $(W \Rightarrow R)$ is true, then R is true. Therefore QAR is true. So $PAW \Rightarrow QAR$

Example 3: Prove $\sqrt{2}$ is irrational. P: $\sqrt{2} \notin \mathbb{Q}$ P: Vz ∉Q 7P: VZEQ $\sqrt{2} \in \mathbb{R} \implies \sqrt{2} = \frac{a}{b} \left(a \& b \text{ ave integers and } \frac{a}{b} \text{ is irreducible} \right)$ $\implies 2 = \frac{a^2}{b^2} \implies a^2 = 2b^2 \implies a^2 \text{ is even} \implies a \text{ is even.}$ $\sqrt{2} \in \mathbb{Q} \implies 2 = \frac{a^2}{b^2} \implies b^2 = \frac{a^2}{2} = \frac{2k \times 2k}{2} = \frac{4k^2}{2} = 2k^2$ ⇒ b² is even ⇒ b is even a is even and b is even $\Rightarrow \frac{a}{b}$ is reducible $\sqrt{z} \in \mathbb{Q} \Longrightarrow (\frac{a}{b} \text{ is reducible and } \frac{a}{b} \text{ is irreducible})$ False,