Example 3: Prove $\sqrt{2}$ is irrational.

$$
\begin{aligned}
P: \sqrt{2} \notin \mathbb{Q} \\
\tau P: \sqrt{2} \in \mathbb{Q}
\end{aligned}
$$

by contradiction
$\sqrt{2} \in \mathbb{Q} \Rightarrow \sqrt{2}=\frac{a}{b}$ ($a \& b$ are integers and $\frac{a}{b}$ is irreancille) $\Rightarrow 2=\frac{a^{2}}{b^{2}} \Rightarrow a^{2}=2 b^{2} \Rightarrow a^{2}$ is even $\Rightarrow a$ is even.

$$
\sqrt{2} \in Q \Rightarrow 2=\frac{a^{2}}{b^{2}} \Rightarrow b^{2}=\frac{a^{2}}{2}=\frac{2 k \times 2 k}{2}=\frac{4 k^{2}}{2}=2 k^{2}
$$

$\Rightarrow b^{2}$ is even $\Rightarrow b$ is even a is even and b is even $\Rightarrow \frac{a}{b}$ is reducible $\sqrt{2} \in Q \Rightarrow\left(\frac{a}{b}\right.$ is reducible and $\frac{a}{b}$ is irreducible $)$ False

More proofs

Consider a $n \times n$ board. (n is even)

(Example $n=4$)

Dominus:

Can we cover the board with Domino?

If we delete 2 opposite corners
 can we still cover the board with Dominus?

P: Two opposite corners are deleted
Q: Board is not coverable
Prove $(P \Rightarrow Q)$ is the.
Proof by contradiction: How would I start:

Start with $P \wedge \neg Q$ (that's the negation of $P \Rightarrow Q$)
Parity argument: make every square even or odd 2 adjacent squares have different painty.
egg. Square is even if sum of its coordinates is even

n even means that
\# even square $=$ \# odd squares

P: Two opposite corners deleted
\Rightarrow two square of the same parity deleted
\Rightarrow \# even square \# abl squares

7Q: board is coverable
\Rightarrow every Domino covers two adjacent square with deferent panty
\Rightarrow \# even square $=$ \# od t square
$P \wedge \neg Q \Rightarrow$ False. Thenfore $(P \Rightarrow Q)$ is time

Prove by contradiction that primes are infinite

Prime are finite \Rightarrow the set of prime numbers is finite \Rightarrow say it's $P=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{k}\right\}$ where $k \in \mathbb{N}$

$$
\begin{aligned}
\operatorname{Magic}\left(\text { Light bulb): }{ }^{n}=1+\prod_{i=1}^{k} p_{i},\right. & n \in \mathbb{N} \\
& n \notin P \text { (not prime) }
\end{aligned}
$$

$\Rightarrow n$ is not divisible by any of the prime numbers (division has remainder 1) a contradiction since every integer can be factored into primes.

