Infinity \& Beyond
S is Countable set:

- S is Finite, or
- There exists a function $f: S \rightarrow \mathbb{N}$ (or $f: \mathbb{N} \rightarrow S$) that is a bijection. (S and N have the same Cardinality)
Example: $\quad f: \mathbb{N} \rightarrow\{2,4,6,8, \ldots\}$

$$
f(x)=2 x
$$

one-to-one: $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$
onto: $y \in\{2,4,6,8, \ldots\}$, let $x=\frac{y}{2} \in \mathbb{N}, f(x)=y$

Alternative definition
S is countable iff there exist a function $f: s \rightarrow \mathbb{N}$ that is one-to-one

Informal interpretation: f "orders" the elements of s. Each element must have a finite rank

If S is countable and $T \subset S$, then T is countable

- Preserve the relative order of elements in T.
- each element in T has a rank that is at most its rank is S.
- each element in T has a finite rank

Alternative view:

Show fog is one-b-one:

$$
\begin{aligned}
f \circ g\left(x_{1}\right) & =f \circ g\left(x_{2}\right) \\
f(\underbrace{g\left(x_{1}\right)}) & =f(\underbrace{\left.g\left(x_{2}\right)\right)} \\
g\left(x_{1}\right) & =g\left(x_{2}\right) \quad \text { (because } f \text { is oue-boone) } \\
x_{1} & =x_{2}
\end{aligned}
$$

- If A and B are countable, then $A \cap B$ is countable

$$
(A \cap B) \subset A
$$

since A is countable, then
$A \cap B$ is also countable.

- If A and B are countable, then $A \cup B$ is countable

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \\
& B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}
\end{aligned}
$$

$\downarrow^{r a n k}$?
consider $A \cup B=\left\{a_{1}, a_{2}, a_{3}, \ldots ., b_{1}, b_{2}, b_{3}, \ldots\right\} X$

$$
A \cup B=\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right\}
$$

If $a_{i}=b_{j}$, drop $\left.b_{j}\right\}$ rank of $b_{i} \leqslant 2 i$
from ranking \Rightarrow rank of $a_{i} \leqslant 2 i-1$

Is \mathbb{Z} countable?

$$
\begin{aligned}
& \mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
& \mathbb{Z}=\underbrace{\{0\} \cup \mathbb{N}}_{\text {countable }} \cup \underbrace{\{-1,-2,-3, \ldots\}}_{R} \\
& f:\{-1,-2,-3, \ldots\} \rightarrow \mathbb{N} \\
& f(x)=-x
\end{aligned}
$$

is a bijection
countable

One-bo-one:

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow & 2 x_{1}=-2 x_{2}+1 X(\text { even odd }) \\
& 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2} \\
& -2 x_{1}+1=2 x_{2} X \\
& -2 x_{1}+1=-2 x_{2}+1 \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Onto: Given $y \in \mathbb{N}$,

- if y is even, let $x=\frac{y}{2} \in \mathbb{Z}_{>0}(y \geqslant 2) . f(x)=2 \frac{y}{2}=y$.
- if y is odd, let $x=\frac{1-y}{2} \in \mathbb{Z}_{\leqslant 0} \quad(y \geqslant 1)$.

$$
f(x)=-2\left(\frac{1-y}{2}\right)^{2}+1=y .
$$

