Is \mathbb{Z} countable?

$$
\begin{aligned}
& \mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
& \mathbb{Z}=\underbrace{\{0\} \cup \mathbb{N}}_{\text {countable }} \cup \underbrace{\{-1,-2,-3, \ldots\}}_{R} \\
& f:\{-1,-2,-3, \ldots\} \rightarrow \mathbb{N} \\
& f(x)=-x
\end{aligned}
$$

is a bijection
countable

One-bo-one:

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow & 2 x_{1}=-2 x_{2}+1 X(\text { even }=\text { odd }) \\
\text { or } & 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2} \\
\text { or } & -2 x_{1}+1=2 x_{2} X \\
\text { or } & -2 x_{1}+1=-2 x_{2}+1 \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Onto: Given $y \in \mathbb{N}$,

- if y is even, let $x=\frac{y}{2} \in \mathbb{Z}_{>0}(y \geqslant 2) . f(x)=2 \frac{y}{2}=y$.
- if y is odd, let $x=\frac{1-y}{2} \in \mathbb{Z}_{\leqslant_{0}} \quad(y \geqslant 1)$.

$$
f(x)=-2\left(\frac{1-y}{2}\right)^{2}+1=y .
$$

Is Q countable?
If A and B are countable, then $A \times B$ is countable

$$
A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \quad B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}
$$

we can "think" of Q as a "subset" of $\mathbb{Z} \times \mathbb{N}$

$$
\frac{a}{b} "^{a} s^{\prime \prime}(a, b)
$$

Summary:
To show that an infinite set S is countable
Formal way: Show there exist $f: S \rightarrow \mathbb{N}$ that is a bijection

Informal way: order the elements of S such that each will have a finite rank

Facts: - S is countable, any subset of S is countable.

- A and B are countable, then $A \cup B, A \cap B, A \times B$ are countable.
\mathbb{R} is uncountable (fay!)
There is No bijection f

$$
f: \mathbb{N} \rightarrow \mathbb{R}
$$

Proof by contradiction: Cantor's diagonal proof
Let $f: \mathbb{N} \rightarrow \mathbb{R}$. We will construct $x \in \mathbb{R}$ such that no $i \in \mathbb{N}$ satisfies $f(i)=x$.
So if f is a bijection, we have a contradiction (it's not onto).

Fins for every $r \in \mathbb{R}$, we will refer to the $i^{\text {th }}$ digit of r as the $i^{\text {th }}$ digit following the decimal point in r 's representation.

We will make $x=0 . x_{1} x_{2} x_{3} \ldots$

$$
\text { where digit } x_{i}+\underbrace{i{ }^{\text {th }} \text { digit of } \frac{f}{f(i)}}_{\text {well defined concept }}
$$

There is no $i \in \mathbb{N}$ such that $f(i)=x$ because x is different from $f(i)$ in the it digit.
"Example" diagonalization

N	\mathbb{R}
1	$0.500000 \ldots$
2	$0.1415 \ldots$
3	0.7130000.
4	$0.860100 \ldots$
5	$0.6666666 \ldots$
$x=0.21221 \ldots$.	

Question: If we attempt to prove that Q is uncountable (which is false), where does Cantor's diagonalization proof break

Given any set S_{1} using a similar diagonal proof we can show there is no bijection from s to $\rho(s)$

any set in
between?
"the continuum hypothesis" is independent of the axiams of set theory (can't prove it or disprove it!)

