Inclusion - Exclusion
Basic setting:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

(why ?)
Example: 50 socks 35 black

How many ave black and cotton?

$$
\begin{aligned}
& |A \cup B|=|A|+|B|-\overbrace{|A \cap B|}^{?} \\
& 50=35+30-|A \cap B| \\
& (A \cap B)=15
\end{aligned}
$$

What about multiple sets

$$
\begin{aligned}
|A \cup B \cup C| & =|A|+|B|+|C| \\
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

Four sets:

$$
\begin{aligned}
|A \cup B \cup C \cup D| & =|A|+|B|+|C|+|D| \quad \text { (include) } \\
& -|A \cap B|-|A \cap C|-|A \cap D|-|B \cap C|-|B \cap D|-|C \cap D| \quad \text { (exclude) } \\
& +|A \cap B \cap C|+|A \cap B \cap D|+|A \cap C \cap D|+|B \cap C \cap D| \quad \text { (include) } \\
& -|A \cap B \cap C \cap D| \quad \text { (exclude) }
\end{aligned}
$$

$$
\binom{4}{1}=4
$$

$$
\binom{4}{2}=6
$$

$$
\binom{4}{3}=4
$$

$$
\binom{4}{4}=1
$$

Why it works?
Consider an element that is in a sets.

- It belongs to $\binom{n}{1}$ sets
- It belongs to ($\binom{n}{2}$ pairs of sets.
- It belongs to ($\left.\begin{array}{l}n \\ 3\end{array}\right)$ triplets of sets
- It belongs to $\binom{n}{n} n$-tuple of sets

$$
\begin{aligned}
\text { \# Limes element is } & =\binom{n}{1}-\binom{n}{2}+\binom{n}{3}-\binom{n}{4}+\ldots+(-1)^{n-1}\binom{n}{n} \\
& =\binom{n}{0}-\left[\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\ldots+(-1)^{n}\binom{n}{n}\right] \\
& =1-0^{n}=\left\{\begin{array}{l}
n=0: 1-0^{0}=1-1=0 \\
n>0: 1-0^{n}=1-0=\{
\end{array}\right.
\end{aligned}
$$

Example: How many positive integers $\leqslant 1000$ are divisible by 2 or 3 or 5 ?
 if p, q are prime:
n divisible by both $\Leftrightarrow n$ divisible by $p q$

$$
\begin{aligned}
\left|s_{2} \cup s_{3} \cup s_{s}\right|= & \left|s_{2}\right|+\left|s_{3}\right|+\left|s_{S}\right| \\
& -\left|s_{2 n} S_{3}\right|-\left|S_{2} \cap S_{S}\right|-\left|S_{3} \cap S_{S}\right|+\left|s_{2} \cap S_{3} \cap S_{S}\right| \\
& =\left\lfloor\frac{1000}{2}\right\rfloor+\left\lfloor\frac{1000}{3}\right\rfloor+\left\lfloor\frac{1000}{5}\right\rfloor \\
& -\left\lfloor\frac{1000}{6}\right\rfloor-\left\lfloor\frac{1000}{10}\right\rfloor-\left\lfloor\frac{1000}{15}\right\rfloor+\left\lfloor\frac{1000}{30}\right\rfloor=?
\end{aligned}
$$

How many passwords of length n are there

$$
\Sigma=\{A, \ldots, z, a, \ldots, z, 0, \ldots, q\}
$$

Answer: 62^{n} (select n from 62 with order \& rep.)
Good password has at least one upper case and one lower case and one digit

1) Choose 3 pos. with order
2) Assign them upper, lower, digit
3) Choose rest in 62^{n-3} ways

Bad password

Note: when $n=3$, verify that you get $\binom{n}{3} \times 31 \times 26 \times 26 \times 10$

Lazy Professor
How many permutations of $(1,2,3, \ldots, n)$ are there if every number i does not occur in position i
"Derangerments"
This is an "AND" logic.
Initial attempt. (Fails)

1. Choose a position for $1 \ldots(n)$
2. choose a position for $2 \ldots$? $\quad . .(n-1)$?
can't tell!
Depends on choice
for 1 for 1
