Lazy Professor
How many permutations of $(1,2,3, \ldots, n)$ are there if every number i does not occur in position i
"Derangerments"
This is an "AND" logic.
Initial attempt. (Fails)

1. Choose a position for $1 \ldots(n)$
2. choose a position for $2 \ldots$? $\quad . .(n-1)$?
can't tell!
Depends on choice
for 1 for 1

Bad permutation:
1 is in the first position or
2 is in the second position, or
3 is ". "third position, On

n is in the $n^{\text {th }}$ position.
(see next slide)

$$
\begin{aligned}
& n .(n-1)!-\binom{n}{2}(n-2)!+\binom{n}{3}(n-3)! \\
& \text { \# bad }: \frac{n!}{1!}-\frac{n!}{2!}+\frac{n!}{3!}-\cdots+(-1)^{n-1} \frac{n!}{n!} \\
& \text { \# good: } \quad \frac{n!}{0!}-\left[\frac{n!}{1!}-\frac{n!}{2!}+\frac{n!}{3!}-\cdots+\cdots+(-1)^{n-1} \frac{n!}{n!}\right] \\
& \quad=n!\left[\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-)^{n} \frac{1}{n!}\right] \quad\left(e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}\right) \\
& n \text { large } \Rightarrow \approx n!e^{-1}=\frac{n!}{e}
\end{aligned}
$$

There are $\binom{n}{k}$ intersection of k sets, each has $(n-k)$! permutations.
\# derangement:

$$
\begin{aligned}
& \text { Aderangements }=\underbrace{\ln }_{\text {Notation }}=\left\lfloor\frac{n!+1}{e}\right\rfloor n \geqslant 1 \\
& !1=0 \\
& 12=1 \\
& 13=2 \\
& x J=\text { the largest } \\
& \text { integer } \leqslant x \\
& 14=9 \\
& 15=44 \\
& \lfloor x\rfloor=\text { the langeat } \\
& \text { integer } \leqslant x \\
& \text { Example: }\lfloor 5.3\rfloor=5
\end{aligned}
$$

Pigentole principle

- Choose SI numbers from $\{1,2, \ldots, 100\}$. Prove that two of them are consecutive.
- Place 10 points inside a 3×3 square. Prove that two of them mill be within a distance of $\sqrt{2}$
- Place numbers $1,2, \ldots, 10$ in 3 bins. Prove that sum in one bin is at least 19 .

Freedom in doing something, Guaranteed Consequence
Pigeon hole

Pigeon hole: Given $n+1$ objects and n boxes, if we place all objects in boxes, at least one box mill contain at least 2 objects.
[Basic form]
proof: (By contradiction)
Each boxes has at most one objects
Let x_{i} be \# objects in box i, then $x_{i} \leqslant 1$
Total number of objects $=\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}$

$$
\leqslant 1+1+\cdots+1=n
$$

a contradiction, since we have $n+1$ objects.

Prove two points will be within a distance $\sqrt{2}$
$\begin{array}{cc}10 \text { objects } \\ 9 \text { bores }\end{array} \left\lvert\, \Rightarrow \begin{gathered}\text { Pigeonhole: } 2 \text { objects will be } \\ \text { in the same box }\end{gathered}\right.$
\downarrow
2 points are in the same 1×1 square
1 longest distance inside square By Pythagoras, it's $\sqrt{2}$

Proof by Pigeonhole

1) Think Pigeonhole
2) Set in up

- what are the objects
- what/where are the boxes

3) Interpret the Pigeonhole result in the given context
