Proof by Pigeonhole

1) Think Pigeonhole
2) Set in up

- what are the objects
- what/where are the boxes

3) Interpret the Pigeonhole result in the given context

Choose 51 numbers in $\{1,2, \ldots, 100\}$
Prove 2 of them will be consecutive Avoid "melanistic" arguments

Pigen hole argument: can't do it: only 50

$$
1,2
$$

To choose a number, place a token in its box 51 tokens 50 boxes, done! One box must contain at least 2 tokens \Rightarrow we have 2 consecutive numbers.

A bit more general
Pigeonhole: If we have n boxes, and m objects and we place all objects in boxes, then at least one box will have at least

$$
\left\lfloor\frac{m-1}{n}\right\rfloor+1 \text { objects. }
$$

proof: similar to previous proof (by contradiction)
If $n, m \in \mathbb{N},\left\lfloor\frac{m-1}{n}\right\rfloor+1=\left\lceil\frac{m}{n}\right\rceil$
"some box must contain at least the average"

$$
x-1<\lfloor x\rfloor \leqslant x \leqslant\lceil x\rceil<x+1
$$

- Assume every box has at most $\left\lfloor\frac{m-1}{n}\right\rfloor$ objects Total \# objects $\leqslant n\left\lfloor\frac{m-1}{n}\right\rfloor \leqslant n \frac{m-1}{n}=m-1$, a contradiction.
- Assme every box has at most $\left\lceil\frac{m}{n}\right\rceil-1$ objects Total \# objects $\leqslant n\left(\left\lceil\frac{m}{n}\right\rceil-1\right)<n\left(\frac{m}{n}+1-1\right)=m$, a contradiction

Which one is better to use? Both:

$$
m, n \in \mathbb{N} \Rightarrow\left\lfloor\frac{m-1}{n}\right\rfloor+1=\left\lceil\frac{m}{n}\right\rceil
$$

An alternative way to look at Pigeonhole
Given n numbers $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
x_{1}+x_{2}+\cdots+x_{n}=m
$$

Then $\exists x_{i} \cdot x_{i} \geqslant \frac{m}{n}$
"One number not be at least the average"
x_{i} : \# objects in box i
n: \# boxes
m: \# objects
But if $x_{i} \geqslant \frac{m}{n}$, then $x_{i} \geqslant\left\lceil\frac{m}{n}\right\rceil$

Application: Place the numbers $1,2, \ldots, 10$ in 3 bins.

- Prove at least one bin contains at least 4 numbers.

Pigeonhole: $n=3, m=10 .\left\lceil\frac{m}{n}\right\rceil=\left\lceil\frac{10}{3}\right\rceil=4$

- Prove at least one bin contains a sum of at least 19.

Pigcoubole: $n=3, m=1+2+\cdots+10=55 .\left[\frac{55}{3}\right]=19$
Scrambled Clock: Scramble the numbers. Snow there are 3 consecutive numbers that add up to at least 20

"Divide" the clock into boxes of 3 .
One box must contain a sum of at least

$$
[(1+2+\cdots+12) / 4]=20
$$

- Sometimes, we have to be "smart" about how to set up the problem.
- Here's an example: The numbers 1 to 10 are written down in some order. Show there are 3 consecutive numbers that add up to at least 15 .

$$
\cdots \cdot|\cdot \cdot \cdot| \cdot \cdot \cdot \mid \cdot
$$

One of the 4 boxes mut contain a sum of at least

$$
\left\lceil\frac{55}{4}\right\rceil=14 .
$$

Does not give us what we want ! ! !

Idea: 4 boxes too many.
Remove largest number, 10 .
example: ••|. • ${ }^{10} \cdot \mid$ ••
One box must contain a sum of at least $\left\lceil\frac{45}{3}\right\rceil=15$.
But what if it's the box with a 10?

- Not consecutive any more
- Replace lat number in box by 10
- Since 10 is largest, still works

Another example of being "smart "in setting up the pigeonhole.

Place 5 points on surface of sphere. Prove that 4 of therm lie in the same hemisphere.

By Pigeonhole one hemisphere must contain $\left\lceil\frac{5}{2}\right\rceil=3$ points.

Does not give vs what we want!

Idea: Choose the hemispheres.

Choose hemispheres defined by the center and 2 points, as shown.
(Among the 3 remaining points, Piegouhole $\left\{\begin{array}{l}\text { one hemisphere will contain at } \\ \text { least }\left[\frac{3}{2}\right\rceil=2 \text { points. }\end{array}\right.$

Therefore, this hemisphere contains 4 points. Done.

Another variant
If

$$
m_{1}+m_{2}+\cdots+m_{n}-n+1
$$

objects are placed in n boxes, then:
Some box i will contain $\geqslant m_{i}$ objects
proof: Assume box i has at most $m_{i}-1$ objects

$$
\text { Total \# objects } \leqslant \sum_{i=1}^{n}\left(m_{i}-1\right)=m_{1}+\cdots+m_{n}-n \text {, }
$$

a contradiction.

Example:
Given 7 objects and two boxes, either box 1 has $\geqslant 3$ objects or box 2 has $\geqslant 5$ objects

$$
\begin{array}{r}
m_{1}=3, m_{2}=5, n=2 \\
m_{1}+m_{2}-n+1=7
\end{array}
$$

