Proof by Induction

- Proof technique
- Prove something of this form

$$
\forall n \in \mathbb{N}, P(n)
$$

- Typically, $\mathbb{N}=\{0,1,2,3, \ldots\}$

Examples:

- Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$ $\forall n \in \mathbb{N}, P(n) \quad$ where $P(n): \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Prove that every positive integer n cam be written as $n=m 2^{k}$ where m is odd, $k \in \mathbb{N}$ first nods
- Prove that $\xlongequal[1+3+5+\cdots+(2 n-1)]{1+5 n^{2}}$ for all $n \geqslant 1$

How to prove by induction
To prove $P(n)$ is true for all $n \geqslant n_{0}$ (typically $n_{0}=0$)

- Base case: Prove $P\left(n_{0}\right)$ is twee (verification)
- Inductive step: Prove $\forall k \geqslant n_{0}, P(k) \Longrightarrow P(k+1)$
(Assume $P(k)$ is tie, use that to prove $P(k+1)$ is the)

This establishes: $\forall n \geqslant n_{0}, P(n)$ is twi

Example 1: Prove $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ for all $n \geqslant 0$
Base case: $\quad n_{0}=0: \quad P(0): \sum_{i=0}^{0} 2^{i}=2^{0+1}-1$

$$
\begin{aligned}
2^{0} & =2^{1}-1 \\
1 & =1
\end{aligned}
$$

Inductive step: $\forall k \geqslant 0, P(k) \Rightarrow P(k+1)$

$$
\begin{aligned}
& P(k): \sum_{i=0}^{k} 2^{i}=2^{k+1}-1 \quad \quad \text { (Inductive hypothesis) } \\
& P(k+1): \sum_{i=0}^{k+1} 2^{i}=2^{(k+1)+1}-1=2^{k+2}-1 \\
& \begin{aligned}
\sum_{i=0}^{k+1} 2^{i}=\sum_{i=0}^{k} 2^{i}+2^{k+1} & =2^{k+1}-1+2^{k+1} \\
& =2^{k+1}+2^{k+1}-1
\end{aligned} \quad=2 \cdot 2^{k+1}-1 \\
& =2^{k+2}-1 . \text { Dore }
\end{aligned}
$$

Example 2 $\prod_{i=1}^{n}\left(1+\frac{1}{i}\right)=n+1$ for all $n \geqslant 1$.
Base case: $\quad n_{0}=1 . \quad \prod_{i=1}^{1}\left(1+\frac{1}{i}\right)=1+1$

$$
1+\frac{1}{1}=1+1
$$

Inductive step: $\quad \forall k \geqslant 1, P(k) \Longrightarrow P(k+1)$

$$
\begin{aligned}
& P(k): \prod_{i=1}^{k}\left(1+\frac{1}{i}\right)=k+1 \quad \text { (Inductive hypo) } \\
& P(k+1): \prod_{i=1}^{k+1}\left(1+\frac{1}{i}\right)=(k+1)+1=k+2 \\
& \prod_{i=1}^{k+1}\left(1+\frac{1}{i}\right)=\prod_{i=1}^{k}\left(1+\frac{1}{i}\right) \times\left(1+\frac{1}{k+1}\right)=(k+1)\left(1+\frac{1}{k+1}\right)=(k+1)+1 \\
&=k+2 .
\end{aligned}
$$

Example 3

$$
T_{0}=0
$$

$T_{n+1}=T_{n} \bar{T}_{n} \quad\left(\bar{T}_{n}=T_{n}\right.$ with bits negated)

$$
\begin{aligned}
& T_{1}=T_{0} \bar{T}_{0}=01 \\
& T_{2}=T_{1} \overline{T_{1}}=0110 \\
& T_{3}=T_{2} \overline{T_{2}}=01101001
\end{aligned}
$$

Prove T_{n} has 2^{n} bits for all $n \in \mathbb{N}=\{0,1,2, \ldots\}$
Base case: $n_{0}=0 . \quad P(0)$: To has 2° bits
Inductive step: $\quad \forall k \geqslant 0, P(k) \Rightarrow P(k+1)$

$$
\begin{aligned}
& P(k): T_{k} \text { has } 2^{k} \text { bits } \quad(\text { Ind - hyp) } \\
& P(k+1)=T_{k+1} \text { has } 2^{k+1} \text { bits } \\
& T_{k+1}=T_{k} \overline{T_{k}} \text { which has } 2^{k}+2^{k} \text { bits }=2 \cdot 2^{k} \text { bits }=2^{k+1} \text { bits. }
\end{aligned}
$$

Done.

Example 4: Prove that T_{n} starts with of for all $n \geqslant 1$
Base case: $n_{0}=1 . \quad T_{1}=01$ so it stents with 01
Inductive step: $\quad \forall k \geqslant 1, P(k) \Longrightarrow P(k+1)$
$P(k): T_{k}$ stents with oi (Inductive hyp)
$P(k+1): T_{k+1}$ stats with oI
$T_{k+1}=T_{k} T_{k}$ and therefore T_{k+1} stats with of since T_{k} stank with or.

Done.

Example 5. Prove T_{n} ends in 10 if n even and 01 if n odd for $n \geqslant 1$

Base case: $n_{0}=1 . \quad T_{1}=01$, it ends in 01 and 1 is odd
Inductive step: $\quad \forall k \geqslant 1, P(k) \Longrightarrow P(k+1)$

$$
T_{k+1}=T_{k} \overline{T_{k}}
$$

$k+1$ even $\Rightarrow k$ is odd $\Rightarrow T_{k}$ ends in of (Inductive hyp.)
$\Rightarrow \bar{T}_{k}$ ends in $10 \Rightarrow T_{k+1}$ ends in 10 .
$K+1$ is odd $\Rightarrow \cdots$ (Symmetric argument)

Example 6 Prove $n^{3}-n$ is a multiple of 3 for all $n \geqslant 0$
Base case: $n_{0}=0 . P(0): 0^{3}-0=0$ is multiple of 3
Inductive step: $\quad \forall k \geqslant 0, P(k) \Longrightarrow P(k+1)$

$$
\begin{aligned}
& P(k): k^{3}-k=3 m \quad \text { (Inductive hypothesis) } \\
& P(k+1):(k+1)^{3}-(k+1)=3 m^{\prime} \quad \text { mim } \in \mathbb{Z} \\
&(k+1)^{3}-(k+1)=k^{3}+3 k^{2}+3 k+1-k-1 \\
&=\left(k^{3}-k\right)+3\left(k^{2}+k\right)
\end{aligned}
$$

Ind. hyp. $C=3 m+3\left(k^{2}+k\right)=3(\underbrace{\left(m+k^{2}+k\right)}_{m^{\prime}}$. Done

