What's wrong with this:

$$
\begin{gathered}
\text { Prove } \sum_{i=1}^{n} i=\frac{n^{2}+n+\sqrt{\pi}}{2}, \forall n \in \mathbb{N} \\
P(k): \sum_{i=1}^{k} i=\frac{k^{2}+k+\sqrt{\pi}}{2} \quad \text { (Inductive hypothesis) } \\
P(k+1): \sum_{i=1}^{k+1} i=\frac{(k+1)^{2}+(k+1)+\sqrt{\pi}}{2} \\
\sum_{i=1}^{k+1} i=\sum_{i=1}^{k} i+(k+1)=\frac{k^{2}+k+\sqrt{\pi}}{2}+\frac{2(k+1)}{2}=\frac{(k+1)^{2}+(k+1)+\sqrt{\pi}}{2} \\
? \text { ? ? }
\end{gathered}
$$

$\forall n \geqslant 2 \cdot n$ lines no two of which are // intersect in one point.
Base case: $\quad n_{0}=2 . P(2): 2$ lines not /| intersect in one point $\sqrt{ }$
Inductive step: $\quad \forall k \geqslant 2 . P(k) \Longrightarrow P(k+1)$
Given $k+1$ lines $l_{1}, l_{2}, l_{3}, \ldots, l_{k}, l_{k+1}$ no two of which are //, Consider the two sets of lines

- $l_{1}, l_{2}, l_{3}, \ldots, l_{k-1}, l_{k+1}$ (no two are II)
- $l_{1}, l_{2}, l_{3}, \ldots, l_{k-1}, l_{k}$ (no two are //)

Each set has k lines \Rightarrow all lines in each set intersect in one point, namely the intersection of $l_{1} \& l_{2}$.
Therefore all $k+1$ lines go through that point !!!!

What was wrong?

Proof does not work for $k=2$ try

$$
l_{1}, l_{2}, l_{3}
$$

$$
l_{1}, l_{2}
$$

l_{2} is not here!

Here's another of those:
For every $n \geqslant 12, n=3 x+7 y$ where $x, y \in \mathbb{N}$.
Base case: $n_{0}=12 . P(12): 12=3 \times 4+7 \times 0$
Inductive step: $\quad \forall k \geqslant 12 . P(k) \Rightarrow P(k+1)$

$$
\begin{aligned}
P(k): k & =3 x+7 y, \quad x, y \in \mathbb{N} \\
P(k+1): k+1 & =3 x^{\prime}+7 y^{\prime}, x_{, y, y}^{\prime} \in \mathbb{N} \\
k+1=3 x+7 y+1 & =3 x+7 y+\underbrace{7-2 x 3} \\
& =3(x-2)+7(y+1) \\
& \sum_{\in \mathbb{N} ?}
\end{aligned}
$$

Strong Induction
Base case Prove $P(k)$ true for $k \leqslant n_{0}$
Inductive Step: $\forall k \geqslant n_{0} . \bigwedge_{i \leqslant k} P(i) \Rightarrow P(k+1)$
$\underbrace{i \leqslant K}_{\text {Inductive hypo. }}$
In other words, assume the property is true up to K, then prove it's also the for $K+l$.

- Note: It's typical that we won't need all statements up to P_{k} to be true, but only some of them.

The notation $\bigwedge_{i \leqslant k} P(i)$ means $P(k) \wedge P(k-1) \wedge P(k-2) \wedge \ldots$

Example 1: For every $n \geqslant 12, n=3 x+7 y$ where $x, y \in \mathbb{N}$
Base case:

$$
\begin{aligned}
& P(12): 12=3(4)+7(0) \\
& P(13): 13=3(2)+7(1) \\
& P(14): 14=3(0)+7(2)
\end{aligned}
$$

Inductive hyp. $\bigwedge_{12 \leqslant i \leqslant k} P(i): i=3 x+7 y$ for all $12 \leqslant i \leqslant k$ Inductive step: $\forall k \geqslant n_{0}, \bigwedge_{1 \leq i \leq k} P(k) \Rightarrow P(k+1) . P(k+1): k+1=3 x+7 y$

$$
\begin{aligned}
k+1=(k+1)-3+3 & =k^{k-2}+3 \\
& =3 x^{\prime}+7 y^{\prime}+3 \\
& =3\left(x^{\prime}+1\right)+7 y^{\prime} \\
& =3 x+7 y
\end{aligned}
$$

Proof works when $k-2 \geqslant 12 \Rightarrow k \geqslant 14$. So $n_{0}=14$.

Example 2. Every $n \geqslant 1$ can be written as $n=m \cdot 2^{i}$ where m is odd, $i \geqslant 0$
Base case: $1=1.2^{\circ}$
Inductive hyp. $\bigwedge_{1 \leqslant j \leqslant k} p(j): j=m \cdot 2^{i} \quad \forall \quad 1 \leqslant j \leqslant k$
Inductive step: $\forall k \geqslant n_{0}, \bigwedge_{1 \leqslant i \leqslant k} P(i) \Rightarrow P(k+1) . P(k+1): k+1=m-2^{i}$ $k+1$ odd : $k+1=(k+1) 2^{0}$
$k+1$ even $\Rightarrow k+1=2 j \quad$ where $j \leqslant k$
so $P(j)$ is twa 1 and $j=m \cdot 2^{l}$
Therefore, $k+1=2\left[m \cdot 2^{l}\right]=m \cdot 2^{l+1}=m \cdot 2^{i}$.
Proof works as long as $\left\{\begin{array}{l}j \leqslant k \Rightarrow \frac{k+1}{2} \leqslant k \Rightarrow k+1 \leqslant 2 k \Rightarrow k \geqslant 1 . \\ j \geqslant 1 \Rightarrow \frac{k+1}{2} \geqslant 1 \Rightarrow k \geqslant 1 .\end{array}\right.$
So $n_{0}=1$.

