Strong induction \& Recurrences

- Strong induction works well with recurrences; for instance, when we have something like

$$
a_{n}=f\left(a_{n-1}, a_{n-2}, \ldots\right) \text { recurrence }
$$

- In other words, a_{n} is expressed in terms of a_{n-1}, a_{n-2}, \ldots
- Proving a property of a_{n} by strong induction can use

$$
\bigwedge_{i \leqslant k} P(k) \Rightarrow P(k+1)
$$

Since $a_{k+1}=f(\underbrace{\left(a_{k}, a_{k-1}, \cdots\right)}$
use the property here

Example 3 :
Consider

$$
\begin{aligned}
& a_{1}=3 \\
& a_{2}=5 \\
& a_{n}=3 a_{n-1}-2 a_{n-2}, n \geqslant 3
\end{aligned}
$$

Let's find a few a_{n} 's:

$$
\begin{aligned}
& a_{3}=3 a_{2}-2 a_{1}=3 \cdot 5-2 \cdot 3=15-6=9 \\
& a_{4}=3 a_{3}-2 a_{2}=3 \cdot 9-2 \cdot 5=27-10=17 \\
& a_{5}=3 a_{4}-2 a_{3}=3 \cdot 17-2 \cdot 9=51-18=33
\end{aligned}
$$

Guess $a_{n}=$

$$
\begin{aligned}
& 3,5,9,17,33,65,129, \\
& a_{n}=2^{n}+1
\end{aligned}
$$

Prove $a_{n}=2^{n}+1$ for all $n \geqslant 1$
Base case

$$
\begin{array}{ll}
P(1): & a_{1}=2^{1}+1=3 \\
P(2): & a_{2}=2^{2}+1=5
\end{array}
$$

Inductive hypothesis : $\bigwedge_{1 \leqslant i \leqslant k} P(i): a_{i}=2^{i}+1 \quad \forall 1 \leqslant i \leqslant k$ Inductive step:

$$
\begin{aligned}
\forall k \geqslant n_{0}, \bigwedge_{\mid \leq i \leqslant k} P(k) \Rightarrow P(k+1) & \quad P(k+1): a_{k+1}=2^{k+1}+1 \\
\underbrace{a_{k+1}=3 a_{k}-2 a_{k-1}}_{\text {use recurrence }} & =3 \cdot\left(2^{k}+1\right)-2\left(2^{k-1}+1\right) \\
& =3 \cdot 2^{k}-2 \cdot 2^{k-1}+1 \\
& =3 \cdot 2^{k}-2^{k}+1 \\
& =2 \cdot 2^{k}+1 \\
& =2^{k+1}+1
\end{aligned}
$$

Example 4. Fibonacci Sequence

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2}, n \geqslant 2
\end{aligned}
$$

Prove $F_{n}=\frac{1}{\sqrt{5}}\left[\phi^{n}-(1-\phi)^{n}\right]$ for $n \geqslant 0$ where $\phi=\frac{1+\sqrt{5}}{2}$ (ϕ is called the golden ratio)
Note: Both ϕ and $1-\phi$ are solutions to $\frac{1}{x}+\frac{1}{x^{2}}=1$
Base case: $P(0): 0=\frac{1}{\sqrt{5}}\left[\phi^{0}-(1-\phi)^{0}\right]=\frac{1}{\sqrt{5}}[1-1]=0$

$$
P(1): 1=\frac{1}{\sqrt{5}}[\phi-(1-\phi)]=\frac{1}{\sqrt{5}}(2 \phi-1)=1
$$

Inductive hypothesis：$\widehat{0} ⿰ 丿 ⺄ ⿱ ㇒^{i \leqslant k} P(i): F_{i}=\frac{1}{\sqrt{5}}\left[\phi^{i}-(1-\phi)^{i+1}\right] \forall 0 \leqslant i \leqslant k$
Inductive step：

$$
\begin{gathered}
\forall k \geqslant n_{0}, \widehat{0},<i<k P(i) \Rightarrow P(k+1) \\
P(k+1) \cdot F_{k+1}=\frac{1}{\sqrt{5}}\left[\phi^{k+1}-(1-\phi)^{k+1}\right] \\
F_{k+1}=F_{k}+F_{k-1}=\frac{1}{\sqrt{5}}\left[\phi^{k}-(1-\phi)^{k}\right]+\frac{1}{\sqrt{5}}\left[\phi^{k-1}+(1-\phi)^{k-1}\right] \\
=\frac{1}{\sqrt{5}} \phi^{k+1}\left[\frac{1}{\phi}+\frac{1}{\phi^{2}}\right]-\frac{1}{\sqrt{5}}(1-\phi)^{k+1}\left[\frac{1}{1-\phi}+\frac{1}{(1-\phi)^{2}}\right] \\
=\frac{1}{\sqrt{5}}\left[\phi^{k+1}-(1-\phi)^{k+1}\right]
\end{gathered}
$$

Consider a game with n blocks stacked in a tower $n\left\{\begin{array}{c}\square \\ \vdots \\ \square \\ \square\end{array}\right.$ The goal is to split the stack repeatedly untie we have n stacks of height 1 .
Prove that for all $n \geqslant 1$, we need exactly $n-1$ splits.
Base case: $P(1):$ A stack of 1 block needs $1-1=0$ splits V
Inductive hypothesis: $\bigwedge_{1 \leqslant i \leqslant k} P(i)$: stack of i blocks needs $i-1$ splits $\forall 1 \leqslant i \leqslant k$
Inductive step: $\forall k \geqslant n_{0}, \bigwedge_{1 \leqslant i \leqslant k} P(k) \Rightarrow P(k+1)$
$P(k+1)$: A stack of $k+1$ blocks requires k splits.

Make a move: First split makes two stacks of size s and $k+1-s$

$$
1 \leqslant s \leqslant K \quad \text { and } \quad 1 \leqslant K+1-s \leqslant K
$$

So $P(s)$ and $P(k+1-s)$ are true.

$$
\begin{aligned}
& \text { Total number of splits }=1+(s-1)+(k+1-s-1) \\
&=1+s-1+k+1-s-1 \\
&=k . \\
& \text { Proof works if } k+1 \geqslant 2 \text { (first split exists.) } \Rightarrow k \geqslant 1 \\
& n_{0}=1
\end{aligned}
$$

Finat Split

$$
\begin{aligned}
& 1 \leqslant s \leqslant K \\
& 1 \leqslant K+1-S \leqslant K
\end{aligned}
$$

Variation: Assume that if you split n into s and $n-s$ you receive a score of $n(n-s)$.

Example:

Prove that the score is always $\binom{n}{2}$
Base case: $P(1):\binom{1}{2}=0$
Inductive hyp: $\bigwedge_{1 \leqslant i \leqslant k} P(i)$: i blocks have score $\binom{i}{2} \forall 1 \leqslant i \leqslant k$
Inductive step: $\forall k \geqslant n_{0}, \bigwedge_{1 \leqslant i \leqslant k} P(i) \Rightarrow P(k+1)$
$P(k+1)$: score is $\binom{k+1}{2}$ for $k+1$ blocks For $k+1$, the score is

$$
\begin{aligned}
& \underbrace{s(k+1-s)}_{\text {First split }}+\binom{s}{2}+\binom{k+1-s}{2} \\
= & s(k+1-s)+\frac{s(s-1)}{2}+\frac{(k+1-s)(k-s)}{2} \\
= & \ddots \frac{k(k+1)}{2}=\binom{k+1}{2}
\end{aligned}
$$

