Solving Recurrences
Consider the Fibonacci sequence

$$
\begin{aligned}
0,1,1,2,3 & , 5,8,13,21,34,55, \ldots \\
F_{0} & =0 \\
f_{1} & =1 \\
f_{n} & =F_{n-1}+F_{n-2} \quad n \geqslant 2
\end{aligned}
$$

we proved by induction (strong induction)

$$
\begin{aligned}
F_{n} & =\frac{1}{\sqrt{5}}\left[\phi^{n}-(1-\phi)^{n}\right], \underbrace{\phi=\frac{1+\sqrt{5}}{2}}_{\uparrow}=1.618 \ldots \\
& \approx \frac{1}{\sqrt{5}} \phi^{n}
\end{aligned}
$$

(why ?) ratio

It's been observed that ratio of consecutive Fib. numbers converges to ϕ

$$
\frac{1}{0}, \frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \ldots \rightarrow \phi \approx 1.618 \ldots
$$

[wishful thinking] what if $F_{n}=c p^{n}$

$$
\frac{F_{n+1}}{F_{n}}=\frac{c p^{n+1}}{c p^{n}}=p \quad(\text { make } p=\phi)
$$

Does this work?

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
c p^{n} & =c p^{n-1}+c p^{n-2} \\
p^{n} & =p^{n-1}+p^{n-2} \\
p^{2} & =p+1
\end{aligned}
$$

ϕ is a solution to this)
This would work if p is a solution to $x^{2}=x+1 \quad\left(x^{2}-x-1=0\right)$

Problem: cant make $f_{0}=c p^{0}$ and $F_{1}=c p^{\prime}$ but $x^{2}-x-1$ has two solutions $\begin{aligned} \longrightarrow p & =\phi \\ y q & =1-\phi\end{aligned}$
make $F_{n}=c_{1} p^{n}+c_{2} q^{n}$

$$
\begin{gathered}
F_{0}=c_{1} p^{0}+c_{2} q^{0}=c_{1}+c_{2}=0 \Rightarrow c_{2}=-c_{1} \\
\begin{array}{c}
F_{1}=c_{1} p+c_{2} q= \\
c_{1} \phi+c_{2}(1-\phi)=1 \\
\\
c_{1} \phi-c_{1}(1-\phi)=1 \\
\\
c_{1}(2 \phi-1)=1 \\
c_{1} \sqrt{5}=1 \\
c_{1}=1 / \sqrt{5} \Rightarrow c_{2}=-\frac{1}{\sqrt{5}}
\end{array} \\
\sqrt{n}=\frac{1}{\sqrt{5}}\left[\phi^{n}-(1-\phi)^{n}\right] .
\end{gathered}
$$

Lett, prove $F_{n}=c_{1} p^{n}+c_{2} q^{n}$ satisfies the recurrence

$$
\begin{aligned}
& F_{n}=F_{n-1}+F_{n-2} \\
& c_{1} p^{n}+c_{2} q^{n}=c_{1} p^{n-1}+c_{2} q^{n-1}+c_{1} p^{n-2}+c_{2} q^{n-2} \\
& c_{1} p^{n}+c_{2} q^{n}=c_{1}\left[p^{n-1}+p^{n-2}\right]+c_{2}\left[q^{n-1}+q^{n-2}\right]
\end{aligned}
$$

since p and q are solutions bo $x^{2}-x-1=0$

$$
\begin{aligned}
p^{2} & =p+1 & q^{2}=q+1 \\
p^{n} & =p^{n-1}+p^{n-2} & q^{n}=q^{n-1}+q^{n-2} \\
c_{1} p^{n}+c_{2} q^{n} & =c_{1} p^{n}+c_{2} q^{n} &
\end{aligned}
$$

In general $a_{n}=A a_{n-1}+B a_{n-2}$
\{characteristic\} $x^{2}=A x+B \xrightarrow{\downarrow} \underbrace{\downarrow}$ Solutions.

$$
a_{n}= \begin{cases}c_{1} p^{n}+c_{2} q^{n} & p \neq q \\ c_{1} p^{n}+c_{2} n p^{n} & p=q\end{cases}
$$

we can prove the above fact using strong induction.

Example:

$$
\begin{aligned}
& \text { Example: } a_{0}=0 \\
& \quad a_{n}=2 a_{n-1}+1 \quad n \geqslant 1 \\
& 0,1,3,7,15,31, \ldots \quad \underbrace{2^{n}-1}_{a_{n}}=2[\underbrace{\left.2^{n-1}-1\right]}_{a_{n-1}}+1 \\
& \text { Guess: } a_{n}=2^{n}-1 \quad
\end{aligned}
$$

How do we make sure: -make sure it satisfies recurrence

- good for first few terms

OR
prove it by induction
proof by induction:
Base case $\quad a_{0}=2^{\circ}-1=1-1=0$
Inductive step: $\quad \forall k \geqslant 0, P(k) \Rightarrow P(k+1)$

$$
\begin{gathered}
P(k): \quad a_{k}=2^{k}-1 \\
P(k+1): \quad a_{k+1}=2^{k+1}-1 \\
a_{k+1}=2 a_{k}+1=2\left[2^{k}-1\right]+1=2^{k+1}-2+1=2^{k+1}-1 .
\end{gathered}
$$

Avoid guessing:

Mobe recos desised

$$
\left.a_{n}=2 a_{n-1}+1\right\} \text { bad }
$$

$$
\xrightarrow{\substack{\text { cocol } \\ \text { shin desied } \\ \text { formm }}}
$$

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+11 \\
& a_{n-1}=2 a_{n-2}+1 \\
& a_{n}-a_{n-1}=2 a_{n-1}-2 a_{n-2}+(1-1)
\end{aligned}
$$

$$
a_{n}=3 a_{n-1}-2 a_{n-2} \quad n \geqslant 2
$$

$$
x^{2}=3 x-2\left\{\begin{array}{l}
p=2 \\
q=1
\end{array}\right.
$$

$$
a_{n}=c_{1} 2^{n}+c_{2} 1^{n}=c_{1} 2^{n}+c_{2}
$$

$$
a_{0}=c_{1} 2^{0}+c_{2}=c_{1}+c_{2}=0 \Rightarrow c_{1}=-c_{2}
$$

$$
a_{1}=c_{1} 2+c_{2}=2 c_{1}-c_{1}=c_{1}=1
$$

$a_{n}=2^{n}-1$

Example:

$$
\begin{aligned}
& a_{1}=0 \quad a_{2}=6 \\
& a_{n}=-a_{n-1}+3 \times 2^{n-1} \quad n \geqslant 2 \\
& \frac{2 a_{n-1}=-2 a_{n-2}+3 \times 2^{n-2} \times 2}{a_{n}-2 a_{n-1}=-a_{n-1}+2 a_{n-2}} \\
& a_{n}=a_{n-1}+2 a_{n-2} \quad n \geqslant 3 \\
& x^{2}=x+2 \quad p=2 \\
& a_{n}=c_{1} 2^{n}+c_{2}(-1)^{n} \\
& a_{1}=2 c_{1}-c_{2}=0 \\
& a_{2}=\frac{4 c_{1}+c_{2}=6}{}+(+1) \\
& a_{n}=6 c_{1}=6 \rightarrow c_{1}=1 \Rightarrow c_{2}=2 \\
& 2^{n}+2(-1)^{n}
\end{aligned}
$$

Example:

$$
\text { le: } \quad \begin{aligned}
& a_{0}=0 \quad a_{1}=2 \\
& a_{n}=4 a_{n-1}-4 a_{n-2} \quad n \geqslant 2 \\
& x^{2}=4 x-4 \\
& x^{2}-4 x+4=0 \\
& (x-2)^{2}=0 \quad \nmid p=2 \\
& \quad 1 q=2 \\
& a_{n}=c_{1} 2^{n}+c_{2} n \cdot 2^{n} \quad(p=q) \\
& a_{0}=c_{1}=0 \\
& a_{1}=c_{2} \cdot 1 \cdot 2^{1}=2 c_{2}=2 \Rightarrow c_{2}=1 \\
& a_{n}=n 2^{n}
\end{aligned}
$$

Linear Homogeneous Recurrence

$$
\begin{aligned}
& a_{n}=\sum_{i=1}^{k} \beta_{i} a_{n-i} \\
& x^{k}=\sum_{i=1}^{k} \beta_{i} x^{k-i}
\end{aligned}
$$

Example: $\quad a_{n}=A a_{n-1}+B a_{n-2}+C a_{n-3}$

$$
x^{3}=A x^{2}+B x+C \underset{>}{\Longleftrightarrow} p
$$

p, q, r all different: $a_{n}=c_{1} p^{n}+c_{2} q^{n}+c_{3} r^{n}$

$$
\begin{aligned}
& p \neq q=r: a_{n}=c_{1} p^{n}+c_{2} q^{n}+c_{3} n q^{n} \\
& p=q=r: a_{n}=c_{1} p^{n}+c_{2} n p^{n}+c_{3} n^{2} p^{n}
\end{aligned}
$$

Solve for c_{1}, c_{2}, and c_{3} using a_{0}, a_{1}, and a_{2}.

